Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Transl Med ; 22(1): 518, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816750

RESUMEN

BACKGROUND: Dysbiosis of the gut microbiota is pivotal in Crohn's disease (CD) and modulated by host physiological conditions. Hyperbaric oxygen therapy (HBOT) is a promising treatment for CD that can regulate gut microbiota. The relationship between HBOT and the gut microbiota in CD remains unknown. METHODS: CD patients were divided into an HBOT group (n = 10) and a control group (n = 10) in this open-label prospective interventional study. The fecal samples before and after HBOT were used for 16 S rRNA gene sequencing and fecal microbiota transplantation (FMT). A colitis mouse model was constructed using dextran sulfate sodium, and intestinal and systematic inflammation was evaluated. The safety and long-term effect of HBOT were observed. RESULTS: HBOT significantly reduced the level of C-reactive protein (CRP) (80.79 ± 42.05 mg/L vs. 33.32 ± 18.31 mg/L, P = 0.004) and the Crohn's Disease Activity Index (CDAI) (274.87 ± 65.54 vs. 221.54 ± 41.89, P = 0.044). HBOT elevated the declined microbial diversity and ameliorated the altered composition of gut microbiota in patients with CD. The relative abundance of Escherichia decreased, and that of Bifidobacterium and Clostridium XIVa increased after HBOT. Mice receiving FMT from donors after HBOT had significantly less intestinal inflammation and serum CRP than the group before HBOT. HBOT was safe and well-tolerated by patients with CD. Combined with ustekinumab, more patients treated with HBOT achieved clinical response (30%vs.70%, P = 0.089) and remission (20%vs.50%, P = 0.160) at week 4. CONCLUSIONS: HBOT modulates the dysbiosis of gut microbiota in CD and ameliorates intestinal and systematic inflammation. HBOT is a safe option for CD and exhibits a promising auxiliary effect to ustekinumab. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2200061193. Registered 15 June 2022, https://www.chictr.org.cn/showproj.html?proj=171605 .


Asunto(s)
Enfermedad de Crohn , Disbiosis , Microbioma Gastrointestinal , Oxigenoterapia Hiperbárica , Inflamación , Enfermedad de Crohn/terapia , Enfermedad de Crohn/microbiología , Humanos , Disbiosis/terapia , Disbiosis/microbiología , Animales , Femenino , Masculino , Inflamación/terapia , Adulto , Intestinos/microbiología , Persona de Mediana Edad , Trasplante de Microbiota Fecal , Ratones , Ratones Endogámicos C57BL , Adulto Joven
2.
Reprod Biol Endocrinol ; 21(1): 80, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658414

RESUMEN

BACKGROUND: Thin endometrium is considered suboptimal for embryo implantation, leading to compromised pregnancy rates without effective therapies. While some studies have reported promoted endometrial growth after a period of hyperbaric oxygen therapy (HBOT) in patients with intrauterine adhesion, there have been no reports in patients with resistant thin endometrium. The purpose of this study was to investigate the impact of HBOT on endometrium growth and pregnancy outcomes in patients with resistant thin endometrium during frozen embryo transfer (FET) treatments. METHODS: This prospective pre-post cohort study was conducted at a university-affiliated assisted reproductive medical center between October 2021 and December 2022. Patients who had experienced at least one canceled transfer cycle due to a thin endometrium(< 7 mm) on the endometrium transformation day, despite the use of standard therapies as well as adjuvant therapies, were enrolled in the study. Patients were assigned voluntarily to either the HBOT group or the concurrent control group. The HBOT group received daily HBOT for at least 10 days during the proliferative phase, in addition to the routine endometrium preparation methods and the concurrent control group underwent cycles without HBOT. Propensity score matching (PSM) was used to ensure comparability between the groups. Both self-control and case-control comparisons were conducted. The primary outcome measured was endometrial thickness (ET) on the day of endometrium transformation. Secondary outcomes included intrauterine pregnancy rate (IPR), embryo implantation rate (IR), miscarriage rate, and others. RESULTS: Patients in the HBOT group demonstrated a significantly thicker endometrial thickness on the day of endometrium transformation after undergoing therapy (5.76 ± 1.66 vs. 6.57 ± 1.23, P = 0.002). This improvement was accompanied by a decreased rate of cycle cancellations. Baseline parameters and endometrial thickness were comparable between the HBOT group and the concurrent control group during the cycle. The IPR was similar in patients who received cleavage-stage embryos (0.0% vs. 6.7%, P = 1.00), but significantly higher in patients in the HBOT group who received blastocysts (53.8% vs. 18.2%, P = 0.017). CONCLUSIONS: A period of HBOT prior to endometrium transformation contributes to increased endometrial thickness and facilitates blastocyst implantation in patients with resistant thin endometrium during FET treatments. TRIAL REGISTRATION: The trial was registered on the Chinese Clinical Trial Registry (registration no. ChiCTR2300072831, retrospectively registered).


Asunto(s)
Oxigenoterapia Hiperbárica , Femenino , Embarazo , Humanos , Estudios de Cohortes , Estudios Prospectivos , Endometrio , Transferencia de Embrión
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(11): 1669-1677, 2023 Nov 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38432857

RESUMEN

OBJECTIVES: Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is the most severe complication of carbon monoxide poisoning, which seriously endangers patients' quality of life. This study aims to investigate the efficacy of hyperbaric oxygen (HBO2) on improving dementia symptoms in patients with DEACMP. METHODS: A retrospective analysis was performed on DEACMP patients, who visited Xiangya Hospital, Central South University from June 2014 to June 2020. Among them, patients who received conventional drug treatment combined with HBO2 treatment were included in an HBO2 group, while those who only received conventional drug treatment were included in a control group. HBO2 was administered once daily. Patients in the HBO2 group received 6 courses of treatment, with each course consisting of 10 sessions. The Hasegawa Dementia Scale (HDS) was used to diagnose dementia, and the Clinical Dementia Rating (CDR) was used to grade the severity of dementia for DEACMP. The Alzheimer's Disease Assessment Scale-Cognitive Section (ADAS-Cog), the Functional Activities Questionnaire (FAQ), the Neuropsychiatric Inventory (NPI), and the Clinician's Interview-Based Impression of Change-Plus Caregiver Input (CIBIC-Plus) were performed to assess cognitive function, ability to perform activities of daily living (ADL), behavioral and psychological symptoms, and overall function. The study further analyzed the results of objective examinations related to patients' dementia symptoms, including magnetic resonance imaging detection of white matter lesions and abnormal electroencephalogram (EEG). The changes of the above indicators before and after treatment, as well as the differences between the 2 groups after treatment were compared. RESULTS: There was no significant difference in the HDS score and CDR grading between the 2 groups before treatment (both P>0.05). After treatment, the score of ADAS-Cog, FAQ, NPI, and CIBIC Plus grading of the 2 groups were significantly improved, and the improvement of the above indicators in the HBO2 group was greater than that in the control group (all P<0.05). The effective rate of the HBO2 group in treating DEACMP was significantly higher than that of the control group (89.47% vs 65.87%, P<0.05). The objective examination results (white matter lesions and abnormal EEG) showed that the recovery of patients in the HBO2 group was better than that in the control group. CONCLUSIONS: Hyperbaric oxygen can significantly relieve the symptoms of dementia in patients with DEACMP.


Asunto(s)
Encefalopatías , Intoxicación por Monóxido de Carbono , Demencia , Oxigenoterapia Hiperbárica , Humanos , Actividades Cotidianas , Intoxicación por Monóxido de Carbono/complicaciones , Intoxicación por Monóxido de Carbono/terapia , Calidad de Vida , Estudios Retrospectivos , Oxígeno , Encefalopatías/etiología , Encefalopatías/terapia , Demencia/etiología , Demencia/terapia
4.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36678534

RESUMEN

BACKGROUND: Afatinib, a second-generation tyrosine kinase inhibitor (TKI), exerts its radiosensitive effects in nasopharyngeal carcinoma (NPC). However, the detailed mechanism of afatinib-mediated sensitivity to radiation is still obscure in NPC. METHODS: Quantitative phosphorylated proteomics and bioinformatics analysis were performed to illustrate the global phosphoprotein changes. The activity of the CD44-Stat3 axis and Epithelial-Mesenchymal Transition (EMT)-linked markers were evaluated by Western blotting. Wound healing and transwell assays were used to determine the levels of cell migration upon afatinib combined IR treatment. Cell proliferation was tested by CCK-8 assay. A pharmacological agonist by IL-6 was applied to activate Stat3. The xenograft mouse model was treated with afatinib, radiation or a combination of afatinib and radiation to detect the radiosensitivity of afatinib in vivo. RESULTS: In the present study, we discovered that afatinib triggered global protein phosphorylation alterations in NPC cells. Further, bioinformatics analysis indicated that afatinib inhibited the CD44-Stat3 signaling and subsequent EMT process. Moreover, functional assays demonstrated that afatinib combined radiation treatment remarkably impeded cell viability, migration, EMT process and CD44-Stat3 activity in vitro and in vivo. In addition, pharmacological stimulation of Stat3 rescued radiosensitivity and biological functions induced by afatinib in NPC cells. This suggested that afatinib reversed the EMT process by blocking the activity of the CD44-Stat3 axis. CONCLUSION: Collectively, this work identifies the molecular mechanism of afatinib as a radiation sensitizer, thus providing a potentially useful combination treatment and drug target for NPC radiosensitization. Our findings describe a new function of afatinib in radiosensitivity and cancer treatment.

5.
Heliyon ; 8(12): e12351, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36582705

RESUMEN

Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is a disease with an incomplete pathological mechanism, long treatment time, and uncertain factors affecting the therapeutic effect. This study explored prognostic factors for DEACMP patients treated with hyperbaric oxygen therapy (HBOT) in 15 hospitals in China. The findings might provide a theoretical basis for further improving the prognosis of DEACMP patients. In this study, data from 330 patients with DEACMP who were admitted to HBOT centers of 15 hospitals in Hunan Province (China) from June 2015 to June 2020 were retrospectively analyzed, and their medical records related to disease prognosis were collected and followed up by telephone. Univariate and multivariate analyses were used to identify independent risk factors for the prognosis of DEACMP patients after HBOT. Univariate analysis revealed 11 possible prognostic factors. Consistent with univariate analysis, multivariate analysis found that underlying diseases (Odds radio(OR) = 2.886, P = 0.048), hypermyotonia (OR = 5.2558, P = 0.008), and HBOT pressure no less Than 2.3 atm absolute (ATA) ((OR = 7.812, P = 0.004) were identified as independent prognostic factors among 20 variables for poor prognosis of DEACMP patients treated with HBOT in the study. This multicenter retrospective analysis revealed that the adverse prognostic markers for DEACMP patients treated with HBOT might be underlying diseases, hypermyotonia, and an HBOT pressure of 2.3 ATA or higher.

6.
Neural Regen Res ; 15(12): 2286-2295, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32594050

RESUMEN

Many hypotheses exist regarding the mechanism underlying delayed encephalopathy after acute carbon monoxide poisoning (DEACMP), including the inflammation and immune-mediated damage hypothesis and the cellular apoptosis and direct neuronal toxicity hypothesis; however, no existing hypothesis provides a satisfactory explanation for the complex clinical processes observed in DEACMP. Leucine-rich repeat and immunoglobulin-like domain-containing protein-1 (LINGO-1) activates the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil containing protein kinase 2 (ROCK2) signaling pathway, which negatively regulates oligodendrocyte myelination, axonal growth, and neuronal survival, causing myelin damage and participating in the pathophysiological processes associated with many central nervous system diseases. However, whether LINGO-1 is involved in DEACMP remains unclear. A DEACMP model was established in rats by allowing them to inhale 1000 ppm carbon monoxide gas for 40 minutes, followed by 3000 ppm carbon monoxide gas for an additional 20 minutes. The results showed that compared with control rats, DEACMP rats showed significantly increased water maze latency and increased protein and mRNA expression levels of LINGO-1, RhoA, and ROCK2 in the brain. Compared with normal rats, significant increases in injured neurons in the hippocampus and myelin sheath damage in the lateral geniculate body were observed in DEACMP rats. From days 1 to 21 after DEACMP, the intraperitoneal injection of retinoic acid (10 mg/kg), which can inhibit LINGO-1 expression, was able to improve the above changes observed in the DEACMP model. Therefore, the overexpression of LINGO-1 appeared to increase following carbon monoxide poisoning, activating the RhoA/ROCK2 signaling pathway, which may be an important pathophysiological mechanism underlying DEACMP. This study was reviewed and approved by the Medical Ethics Committee of Xiangya Hospital of Central South Hospital (approval No. 201612684) on December 26, 2016.

7.
J Cancer ; 10(2): 305-312, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30719124

RESUMEN

Background: The radioresistance of nasopharyngeal carcinoma (NPC) was the main cause of radiotherapy failure and it was still a challenge in the treatment of advanced NPC patients. Previous clinical studies demonstrated that sodium glycididazole(CMNA) can enhance the radiosensitivity of NPC, but the corresponding cellular mechanisms or processes remains largely unclear. Methods: To clarify the radiosensitizing effects of CMNA on NPC cells and reveal its cellular mechanisms, its effect on cell survival of NPC cells was assessed by MTT and clonogenic assay, with or without radiation. The potential cellular mechanisms such as cell cycle distribution, apoptosis and DNA damage were assessed. A retrospective analysis of the outcome of patients with III-IV stage NPC who undergo same radiochemotherapy with or without concurrent CMNA treatment was performed to elucidate the role of CMNA in the improvement of the curative effects. Results: The treatment with CMNA at the concentration lower or close to the clinical dosage had little effect on cell survival, cell cycle distribution and a weak effect on DNA damage and cell apoptosis of NPC cells. The combination of CMNA and radiation significantly increased the DNA damage and enhanced the apoptosis of NPC cells, but did not significantly alter the cell cycle distribution as compared with the irradiation (IR) alone. A total of 99 patients who underwent radiochemotherapy were categorized into those with (treatment group, n=52) and without (control group, n=47) the treatment with CMNA. The complete response rates of patients in treatment group were significantly higher than in control group. Conclusions: Our results suggested that CMNA enhance the sensitivity of the NPC cells to radiation via enhancing DNA damage and promoting cell apoptosis. It provides clues for further investigation of the molecular mechanism of the radiosensitization of CMNA on NPC cells.

8.
J Cancer ; 10(9): 2063-2073, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31205567

RESUMEN

Ionizing radiation (IR) is the central component of the therapeutic scheme for nasopharyngeal carcinoma (NPC) at present. Previous studies show that inhibition of epidermal growth factor receptor (EGFR) enhances the radiosensitivity of NPC; however the effects of EGFR-targeted agents are limited. In this study, we observed that simultaneously inhibition of EGFR and HER2 by afatinib could augment the radiosensitivity of NPC cells; this approach has an advantage over erlotinib-mediated inhibition of EGFR alone. The afatinib-induced augmentation of NPC cell radiosensitivity was associated with increases in apoptosis and accumulation of DNA damage that were induced by radiation. In addition, the crosstalk between radiation-induced activities and EGFR-, and HER2-related downstream pathways may contribute to the enhancement of radiosensitivity. Our findings indicate the potential of repositioning afatinib or other ERBB-family-targeted agents for improving radiation response in NPC cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA