Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.917
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 153(5): 1012-24, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706739

RESUMEN

Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic ß subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.


Asunto(s)
Reparación del ADN , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Espermatogénesis , Testículo/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Roturas del ADN de Doble Cadena , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/química , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
2.
EMBO J ; 42(10): e112408, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37009655

RESUMEN

The molecular mechanisms underlying estrogen receptor (ER)-positive breast carcinogenesis and endocrine therapy resistance remain incompletely understood. Here, we report that circPVT1, a circular RNA generated from the lncRNA PVT1, is highly expressed in ERα-positive breast cancer cell lines and tumor samples and is functionally important in promoting ERα-positive breast tumorigenesis and endocrine therapy resistance. CircPVT1 acts as a competing endogenous RNA (ceRNA) to sponge miR-181a-2-3p, promoting the expression of ESR1 and downstream ERα-target genes and breast cancer cell growth. Furthermore, circPVT1 directly interacts with MAVS protein to disrupt the RIGI-MAVS complex formation, inhibiting type I interferon (IFN) signaling pathway and anti-tumor immunity. Anti-sense oligonucleotide (ASO)-targeting circPVT1 inhibits ERα-positive breast cancer cell and tumor growth, re-sensitizing tamoxifen-resistant ERα-positive breast cancer cells to tamoxifen treatment. Taken together, our data demonstrated that circPVT1 can work through both ceRNA and protein scaffolding mechanisms to promote cancer. Thus, circPVT1 may serve as a diagnostic biomarker and therapeutic target for ERα-positive breast cancer in the clinic.


Asunto(s)
Neoplasias de la Mama , ARN Circular , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , ARN Circular/genética , ARN Circular/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536757

RESUMEN

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Asunto(s)
Arbovirus , Hemípteros , Oryza , Tenuivirus , Animales , Arbovirus/genética , Hemípteros/fisiología , Tenuivirus/fisiología , Insectos Vectores , Antivirales/metabolismo , Oryza/genética , Enfermedades de las Plantas
4.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588412

RESUMEN

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Asunto(s)
Hemípteros , MicroARNs , Oryza , Animales , Interferencia de ARN , MicroARNs/genética , MicroARNs/metabolismo , Saliva , Hemípteros/fisiología , Inmunidad de la Planta/genética , Oryza/genética
5.
Nat Chem Biol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514884

RESUMEN

Protein ubiquitylation controls diverse processes within eukaryotic cells, including protein degradation, and is often dysregulated in disease. Moreover, small-molecule degraders that redirect ubiquitylation activities toward disease targets are an emerging and promising therapeutic class. Over 600 E3 ubiquitin ligases are expressed in humans, but their substrates remain largely elusive, necessitating the development of new methods for their discovery. Here we report the development of E3-substrate tagging by ubiquitin biotinylation (E-STUB), a ubiquitin-specific proximity labeling method that biotinylates ubiquitylated substrates in proximity to an E3 ligase of interest. E-STUB accurately identifies the direct ubiquitylated targets of protein degraders, including collateral targets and ubiquitylation events that do not lead to substrate degradation. It also detects known substrates of E3 ligase CRBN and VHL with high specificity. With the ability to elucidate proximal ubiquitylation events, E-STUB may facilitate the development of proximity-inducing therapeutics and act as a generalizable method for E3-substrate mapping.

6.
Mol Cell ; 69(2): 334-346.e4, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29307513

RESUMEN

Visualizing dynamics of kinase activity in living animals is essential for mechanistic understanding of cell and developmental biology. We describe GFP-based kinase reporters that phase-separate upon kinase activation via multivalent protein-protein interactions, forming intensively fluorescent droplets. Called SPARK (separation of phases-based activity reporter of kinase), these reporters have large dynamic range (fluorescence change), high brightness, fast kinetics, and are reversible. The SPARK-based protein kinase A (PKA) reporter reveals oscillatory dynamics of PKA activities upon G protein-coupled receptor activation. The SPARK-based extracellular signal-regulated kinase (ERK) reporter unveils transient dynamics of ERK activity during tracheal metamorphosis in live Drosophila. Because of intensive brightness and simple signal pattern, SPARKs allow easy examination of kinase signaling in living animals in a qualitative way. The modular design of SPARK will facilitate development of reporters of other kinases.


Asunto(s)
Imagen Óptica/métodos , Fosfotransferasas/fisiología , Transducción de Señal/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Drosophila , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Fosforilación , Fosfotransferasas/metabolismo
7.
PLoS Pathog ; 19(3): e1011266, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928081

RESUMEN

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.


Asunto(s)
Tenuivirus , Virosis , Animales , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Tenuivirus/metabolismo , Insectos Vectores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
8.
Hepatology ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836646

RESUMEN

Liver diseases contribute to approximately 2 million deaths each year and account for 4% of all deaths globally. Despite various treatment options, the management of liver diseases remains challenging. Physical exercise is a promising non-pharmacological approach to maintain and restore homeostasis and effectively prevent and mitigate liver diseases. In this review, we delve into the mechanisms of physical exercise in preventing and treating liver diseases, highlighting its effects on improving insulin sensitivity, regulating lipid homeostasis, and modulating immune function. Additionally, we evaluate the impact of physical exercise on various liver diseases, including liver ischemia/reperfusion (I/R) injury, cardiogenic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), portal hypertension (PH), cirrhosis, and liver cancer. In conclusion, the review underscores the effectiveness of physical exercise as a beneficial intervention in combating liver diseases.

9.
Hepatology ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38266270

RESUMEN

BACKGROUND AND AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) fibrosis is a reversible stage of liver disease accompanied by inflammatory cell infiltration. Neutrophils extrude a meshwork of chromatin fibers to establish neutrophil extracellular traps (NETs), which play important roles in inflammatory response regulation. Our previous work demonstrated that NETs promote HCC in MASH. However, it is still unknown if NETs play a role in the molecular mechanisms of liver fibrosis. APPROACH AND RESULTS: Following 12 weeks of Western diet/carbon tetrachloride, MASH fibrosis was identified in C57BL/6 mice with increased NET formation. However, NET depletion using DNase I treatment or mice knocked out for peptidyl arginine deaminase type IV significantly attenuated the development of MASH fibrosis. NETs were demonstrated to induce HSCs activation, proliferation, and migration through augmented mitochondrial and aerobic glycolysis to provide additional bioenergetic and biosynthetic supplies. Metabolomic analysis revealed markedly an altered metabolic profile upon NET stimulation of HSCs that were dependent on arachidonic acid metabolism. Mechanistically, NET stimulation of toll-like receptor 3 induced cyclooxygenase-2 activation and prostaglandin E2 production with subsequent HSC activation and liver fibrosis. Inhibiting cyclooxygenase-2 with celecoxib reduced fibrosis in our MASH model. CONCLUSIONS: Our findings implicate NETs playing a critical role in the development of MASH hepatic fibrosis by inducing metabolic reprogramming of HSCs through the toll-like receptor 3/cyclooxygenase-2/cyclooxygenase-2 pathway. Therefore, NET inhibition may represent an attractive treatment target for MASH liver fibrosis.

10.
Exp Cell Res ; 439(1): 114096, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38768700

RESUMEN

Early vascularization plays an essential role during the whole process in bone regeneration because of the function of secreting cytokines, transporting nutrients and metabolic wastes. As the preliminary basis of bone repair, angiogenesis is regulated by immune cells represented by macrophages to a great extent. However, with the discovery of the endolymphatic circulation system inside bone tissue, the role of vascularization became complicated and confusing. Herein, we developed a macrophage/lymphatic endothelial cells (LECs)/human umbilical vein endothelial cells (HUVECs) co-culture system to evaluate the effect of macrophage treated lymphatic endothelial cells on angiogenesis in vitro and in vivo. In this study, we collected the medium from macrophage (CM) for LECs culture. We found that CM2 could promote the expression of LECs markers and migration ability, which indicated the enhanced lymphogenesis. In addition, the medium from LECs was collected for culturing HUVECs. The CM2-treated LECs showed superior angiogenesis property including the migration capacity and expression of angiogenetic markers, which suggested the superior vascularization. Rat femoral condyle defect model was applied to confirm the hypothesis in vivo. Generally, M2-macrophage treated LECs showed prominent angiogenetic potential coupling with osteogenesis.


Asunto(s)
Técnicas de Cocultivo , Células Endoteliales de la Vena Umbilical Humana , Macrófagos , Neovascularización Fisiológica , Osteogénesis , Humanos , Animales , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Macrófagos/metabolismo , Ratas , Células Endoteliales/metabolismo , Movimiento Celular , Ratas Sprague-Dawley , Regeneración Ósea/fisiología , Ratones , Células Cultivadas , Masculino , Angiogénesis
11.
Proc Natl Acad Sci U S A ; 119(35): e2119267119, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35998222

RESUMEN

A carbazolide-bis(NHC) NiII catalyst (1; NHC, N-heterocyclic carbene) for selective CO2 photoreduction was designed herein by a one-stone-two-birds strategy. The extended π-conjugation and the strong σ/π electron-donation characteristics (two birds) of the carbazolide fragment (one stone) lead to significantly enhanced activity for photoreduction of CO2 to CO. The turnover number (TON) and turnover frequency (TOF) of 1 were ninefold and eightfold higher than those of the reported pyridinol-bis(NHC) NiII complex at the same catalyst concentration using an identical Ir photosensitizer, respectively, with a selectivity of ∼100%. More importantly, an organic dye was applied to displace the Ir photosensitizer to develop a noble-metal-free photocatalytic system, which maintained excellent performance and obtained an outstanding quantum yield of 11.2%. Detailed investigations combining experimental and computational studies revealed the catalytic mechanism, which highlights the potential of the one-stone-two-birds effect.

12.
Proc Natl Acad Sci U S A ; 119(15): e2119429119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377791

RESUMEN

Charge density waves (CDWs) have been observed in nearly all families of copper-oxide superconductors. But the behavior of these phases across different families has been perplexing. In La-based cuprates, the CDW wavevector is an increasing function of doping, exhibiting the so-called Yamada behavior, while in Y- and Bi-based materials the behavior is the opposite. Here, we report a combined resonant soft X-ray scattering (RSXS) and neutron scattering study of charge and spin density waves in isotopically enriched La1.8−xEu0.2SrxCuO4 over a range of doping 0.07≤x≤0.20. We find that the CDW amplitude is temperature independent and develops well above experimentally accessible temperatures. Further, the CDW wavevector shows a nonmonotonic temperature dependence, exhibiting Yamada behavior at low temperature with a sudden change occurring near the spin ordering temperature. We describe these observations using a Landau­Ginzburg theory for an incommensurate CDW in a metallic system with a finite charge compressibility and spin-CDW coupling. Extrapolating to high temperature, where the CDW amplitude is small and spin order is absent, our analysis predicts a decreasing wavevector with doping, similar to Y and Bi cuprates. Our study suggests that CDW order in all families of cuprates forms by a common mechanism.

13.
BMC Genomics ; 25(1): 53, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212677

RESUMEN

BACKGROUND: Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS: In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS: Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.


Asunto(s)
Heterópteros , Transcriptoma , Animales , Heterópteros/genética , Glándulas Salivales , Perfilación de la Expresión Génica/métodos , Saliva
14.
Mol Biol Evol ; 40(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37804524

RESUMEN

Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.


Asunto(s)
Áfidos , Hemípteros , Animales , Ferredoxinas/metabolismo , Plantas/metabolismo , Hemípteros/genética , Nicotiana/genética , Nicotiana/metabolismo , Áfidos/metabolismo , Proteínas y Péptidos Salivales/genética
15.
BMC Plant Biol ; 24(1): 453, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789944

RESUMEN

BACKGROUND: Impatiens is an important genus with rich species of garden plants, and its distribution is extremely extensive, which is reflected in its diverse ecological environment. However, the specific mechanisms of Impatiens' adaptation to various environments and the mechanism related to lignin remain unclear. RESULTS: Three representative Impatiens species,Impatiens chlorosepala (wet, low degree of lignification), Impatiens uliginosa (aquatic, moderate degree of lignification) and Impatiens rubrostriata (terrestrial, high degree of lignification), were selected and analyzed for their anatomical structures, lignin content and composition, and lignin-related gene expression. There are significant differences in anatomical parameters among the stems of three Impatiens species, and the anatomical structure is consistent with the determination results of lignin content. Furthermore, the thickness of the xylem and cell walls, as well as the ratio of cell wall thickness to stem diameter have a strong correlation with lignin content. The anatomical structure and degree of lignification in Impatiens can be attributed to the plant's growth environment, morphology, and growth rate. Our analysis of lignin-related genes revealed a negative correlation between the MYB4 gene and lignin content. The MYB4 gene may control the lignin synthesis in Impatiens by controlling the structural genes involved in the lignin synthesis pathway, such as HCT, C3H, and COMT. Nonetheless, the regulation pathway differs between species of Impatiens. CONCLUSIONS: This study demonstrated consistency between the stem anatomy of Impatiens and the results obtained from lignin content and composition analyses. It is speculated that MYB4 negatively regulates the lignin synthesis in the stems of three Impatiens species by regulating the expression of structural genes, and its regulation mechanism appears to vary across different Impatiens species. This study analyses the variations among different Impatiens plants in diverse habitats, and can guide further molecular investigations of lignin biosynthesis in Impatiens.


Asunto(s)
Impatiens , Lignina , Tallos de la Planta , Lignina/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Impatiens/genética , Impatiens/metabolismo , Impatiens/crecimiento & desarrollo , Ecosistema , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Especificidad de la Especie , Genes de Plantas , Pared Celular/metabolismo , Pared Celular/genética
16.
Small ; : e2401438, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693084

RESUMEN

The applications of amino acid-based polymers are impeded by their limited structure and functions. Herein, a small library of methionine-based polymers (Met-P) with programmed structure and reactive oxygen species (ROS)-responsive properties is developed for tumor therapy. The Met-P can self-assemble into sub-100 nm nanoparticles (NPs) and effectively load anticancer drugs (such as paclitaxel (PTX) (P@Met-P NPs)) via the nanoprecipitation method. The screened NPs with superior stability and high drug loading are further evaluated in vitro and in vivo. When encountering with ROS, the Met-P polymers will be oxidized and then switch from a hydrophobic to a hydrophilic state, triggering the rapid and self-accelerated release of PTX. The in vivo results indicated that the screened P@2Met10 NPs possessed significant anticancer performance and effectively alleviated the side effects of PTX. More interestingly, the blank 2Met10 NPs displayed an obvious self-tumor inhibiting efficacy. Furthermore, the other Met-P NPs (such as 2Met8, 4Met8, and 4Met10) are also found to exhibit varied self-anti-cancer capabilities. Overall, this ROS-responsive Met-P library is a rare anticancer platform with hydrophobic/hydrophilic switching, controlled drug release, and self-anticancer therapy capability.

17.
Small ; : e2311862, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501876

RESUMEN

In recent years, the research of FeSe2 and its composites in environmental remediation has been gradually carried out. And the FeSe2 materials show great catalytic performance in photocatalysis, electrocatalysis, and Fenton-like reactions for pollutants removal. Therefore, the studies and applications of FeSe2 materials are reviewed in this work, including the common synthesis methods, the role of Fe and Se species as well as the catalyst structure, and the potential for practical environmental applications. Hereinto, it is worth noting in particular that the lower-valent Se (Se2- ), unsaturated Se (Se- ), and Se vacancies (VSe ) can play different roles in promoting pollutants removal. In addition, the FeSe2 material also demonstrates high stability, reusability, and adaptability over a wider pH range as well as universality to different pollutants. In view of the overall great properties and performance of FeSe2 materials compared with other typical Fe-based materials, it deserves and needs further research. And finally, this paper presents some challenges and perspectives in future development, looking forward to providing helpful guidance for the subsequent research of FeSe2 and its composites for environmental application.

18.
Small ; : e2401970, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770987

RESUMEN

Transition metal compounds (TMCs) have long been potential candidate catalysts in persulfate-based advanced oxidation process (PS-AOPs) due to their Fenton-like catalyze ability for radical generation. However, the mechanism involved in TMCs-catalyzed nonradical PS-AOPs remains obscure. Herein, the growth of FeO on the Fe3O4/carbon precursor is regulated by restricted pyrolysis of MIL-88A template to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. The higher FeO incorporation conferred a 2.6 times higher degradation performance than that catalyzed by Fe3O4 and also a higher interference resistance to anions or natural organic matter. Unexpectedly, the quenching experiment, probe method, and electron paramagnetic resonance quantitatively revealed that the FeO reassigned high nonradical species (1O2 and FeIV═O) generation to replace original radical system created by Fe3O4. Density functional theory calculation interpreted that PMS molecular on strongly-adsorbed (200) and (220) facets of FeO enjoyed unique polarized electronic reception for surface confinement effect, thus the retained peroxide bond energetically supported the production of 1O2 and FeIV═O. This work promotes the mechanism understanding of TMCs-induced surface-catalyzed persulfate activation and enables them better perform catalytic properties in wastewater treatment.

19.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35238349

RESUMEN

Inhibition of host protein functions using established drugs produces a promising antiviral effect with excellent safety profiles, decreased incidence of resistant variants and favorable balance of costs and risks. Genomic methods have produced a large number of robust host factors, providing candidates for identification of antiviral drug targets. However, there is a lack of global perspectives and systematic prioritization of known virus-targeted host proteins (VTHPs) and drug targets. There is also a need for host-directed repositioned antivirals. Here, we integrated 6140 VTHPs and grouped viral infection modes from a new perspective of enriched pathways of VTHPs. Clarifying the superiority of nonessential membrane and hub VTHPs as potential ideal targets for repositioned antivirals, we proposed 543 candidate VTHPs. We then presented a large-scale drug-virus network (DVN) based on matching these VTHPs and drug targets. We predicted possible indications for 703 approved drugs against 35 viruses and explored their potential as broad-spectrum antivirals. In vitro and in vivo tests validated the efficacy of bosutinib, maraviroc and dextromethorphan against human herpesvirus 1 (HHV-1), hepatitis B virus (HBV) and influenza A virus (IAV). Their drug synergy with clinically used antivirals was evaluated and confirmed. The results proved that low-dose dextromethorphan is better than high-dose in both single and combined treatments. This study provides a comprehensive landscape and optimization strategy for druggable VTHPs, constructing an innovative and potent pipeline to discover novel antiviral host proteins and repositioned drugs, which may facilitate their delivery to clinical application in translational medicine to combat fatal and spreading viral infections.


Asunto(s)
Antivirales , Virus de la Influenza A , Antivirales/farmacología , Antivirales/uso terapéutico , Dextrometorfano , Humanos , Virus de la Influenza A/genética
20.
FASEB J ; 37(6): e22989, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37199674

RESUMEN

Neuromedin S (NMS) is a neuroregulatory substance and has many important roles in regulating physiological functions in animal cells, while their specific functions and mechanisms in Leydig cells (LCs) of the testis remain unclear. The current study aims to investigate the role and potential mechanisms of NMS and its receptors in regulating steroidogenesis and proliferation in goat LCs. We found that NMS and its receptors were mainly expressed in LCs of goat testes at different ages (1-day-old, 3-month-old, and 9-month-old), and the highest expressions detected at age three months. NMS addition significantly enhanced the testosterone secretion, STAR, CYP11A1, 3BHSD, and CYP17A1 expressions, cell proliferation, and PCNA expression in vitro cultured goat LCs. Mechanistically, NMS addition increased G1/S cell population, the expressions of CCND1, CDK4 and CDK6, the activities of SOD2 and CAT, and enhanced the mitochondrial fusion, the production of ATP, and mitochondrial membrane potential, while inhibited cellular ROS production, and maintained a low ubiquitination level of mitochondrial proteins. Notably, these effects of NMS addition on goat LCs were suppressed by co-treatment with NMUR2 knockdown. Therefore, these data suggest that activating NMUR2 with NMS enhances testosterone production and cell proliferation in goat LCs through modulating mitochondrial morphology, function, and autophagy. These findings may provide a novel view of the regulatory mechanisms involved in male sexual maturation.


Asunto(s)
Cabras , Células Intersticiales del Testículo , Animales , Masculino , Células Intersticiales del Testículo/metabolismo , Cabras/metabolismo , Testosterona/metabolismo , Mitocondrias/metabolismo , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA