Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 191(1): 558-574, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36018261

RESUMEN

The trans-Golgi network (TGN) acts as a central platform for sorting and secreting various cargoes to the cell surface, thus being essential for the full execution of plant immunity. However, the fine-tuned regulation of TGN components in plant defense and stress response has been not fully elucidated. Our study revealed that despite largely compromising penetration resistance, the loss-of-function mutation of the TGN component protein ECHIDNA (ECH) induced enhanced postinvasion resistance to powdery mildew in Arabidopsis thaliana. Genetic and transcriptome analyses and hormone profiling demonstrated that ECH loss resulted in salicylic acid (SA) hyperaccumulation via the ISOCHORISMATE SYNTHASE 1 biosynthesis pathway, thereby constitutively activating SA-dependent innate immunity that was largely responsible for the enhanced postinvasion resistance. Furthermore, the ech mutant displayed accelerated SA-independent spontaneous cell death and constitutive POWDERY MILDEW RESISTANCE 4-mediated callose depositions. In addition, ECH loss led to a chronically prolonged endoplasmic reticulum stress in the ech mutant. These results provide insights into understanding the role of TGN components in the regulation of plant immunity and stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tachyglossidae , Animales , Red trans-Golgi/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tachyglossidae/metabolismo , Arabidopsis/metabolismo , Mutación/genética , Muerte Celular , Estrés del Retículo Endoplásmico , Enfermedades de las Plantas/genética , Ácido Salicílico/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Dis ; : PDIS08231571SC, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37840291

RESUMEN

Clubroot disease caused by the soil-borne Plasmodiophora brassicae is devastating to Brassicaceae crops and spreading rapidly in China in recent years, resulting in great yield losses annually. Virulence of P. brassicae populations specializes and is in dynamic change in the fields. Information on the pathotypes and their distributions is crucial to control the clubroot disease. Presently, the pathotypes of P. brassicae prevalent in China, however, are not well determined. In this study, we used 16 Brassica hosts, including the European Clubroot Differential (ECD) and Williams sets, to designate the pathotypes of 33 P. brassicae populations from 13 provinces. The 33 P. brassicae populations could be divided into 26 pathotypes by the ECD set or seven pathotypes by the Williams set, revealing ECD16/15/31 and ECD16/31/31 or P4 and P2 as the predominant pathotypes. We found that the Brassica rapa differentials ECD01 to ECD04 showed stable and high levels of resistance to most pathotypes of P. brassicae in China, thereby providing valuable resources for clubroot-resistance breeding of Brassicaceae crops. The ECD set exhibited much higher discernibility and further divided the isolates that belonged to the P4 pathotype into 10 ECD pathotypes. Isolates of ECD16/23/31 and ECD16/15/31 were strongly virulent on Huashuang 5R, the first and widely used clubroot-resistant cultivar of oilseed rape in China. As we learn, 26 pathotypes are the most diverse populations of P. brassicae characterized until now in China. Our study provides new insights into virulence specialization of P. brassicae and their geographical distributions, contributing to exploitation of clubroot-resistant resources and the field layout of the present resistant Brassica crops in China.

3.
J Org Chem ; 88(1): 75-85, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36537803

RESUMEN

Here, we report a facile and metal-free method for the construction of dihydrooxazine derivatives via a formal (3 + 3) annulation reaction of naphthols and 1,3,5-triazinanes. The 1,3,5-triazinanes were utilized as a formal three-atom synthon (C-N-C) for cycloaddition. In addition, dihydrothiazine and tetrahydrobenzoquinazoline derivatives could also be produced in good yields by this strategy under catalyst-free and additive-free conditions.


Asunto(s)
Aminas , Naftoles , Reacción de Cicloadición , Catálisis
4.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36555357

RESUMEN

Trehalose and trehalose-6 phosphate played important roles in floral organ development, embryonic development, cell morphogenesis, and signal transduction under abiotic stress. However, little is known about the trehalose-6-phosphate synthase (TPS) gene family in Brassica napus. In this study, in total, 26 TPS genes in B. napus (BnTPS genes) were identified and classified into two groups. In each group, the BnTPS genes showed relatively conserved gene structures. The protein-protein interaction (PPI) network and enrichment analysis indicated that BnTPS genes were involved in the glycolysis/gluconeogenesis, fructose and mannose metabolism, galactose metabolism, pentose phosphate pathway, carbohydrate transmembrane transport, trehalose-phosphatase activity, etc. The expression of BnTPS genes varied greatly across different tissues, while most of the BnTPS genes showed a considerable improvement in expression under different abiotic stresses, indicating that BnTPS genes were significantly responsive to the abiotic treatments. In addition, the association mapping analysis revealed that eight BnTPS genes were potential regulators of particular agronomic traits. Among them, the gene BnTPS23 was significantly associated with the primary flowering time (PFT), full flowering time (FFT1), and final flowering time (FFT2), suggesting that BnTPS genes may play an important role in regulating key agronomic traits in B. napus. In summary, our research provides a better understanding of BnTPS genes, facilitates the breeding of superior B. napus varieties, and paves the way for future functional studies.


Asunto(s)
Brassica napus , Brassica napus/metabolismo , Genes de Plantas , Trehalosa/genética , Trehalosa/metabolismo , Fitomejoramiento , Regulación de la Expresión Génica de las Plantas , Filogenia
5.
Plant J ; 103(2): 843-857, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32270540

RESUMEN

Brassica napus is a recent allopolyploid derived from the hybridization of Brassica rapa (Ar Ar ) and Brassica oleracea (Co Co ). Because of the high sequence similarity between the An and Cn subgenomes, it is difficult to provide an accurate landscape of the whole transcriptome of B. napus. To overcome this problem, we applied a single-molecule long-read isoform sequencing (Iso-Seq) technique that can produce long reads to explore the complex transcriptome of B. napus at the isoform level. From the Iso-Seq data, we obtained 147 698 non-redundant isoforms, capturing 37 403 annotated genes. A total of 18.1% (14 934/82 367) of the multi-exonic genes showed alternative splicing (AS). In addition, we identified 549 long non-coding RNAs, the majority of which displayed tissue-specific expression profiles, and detected 7742 annotated genes that possessed isoforms containing alternative polyadenylation sites. Moreover, 31 591 AS events located in open reading frames (ORFs) lead to potential protein isoforms by in-frame or frameshift changes in the ORF. Illumina RNA sequencing of five tissues that were pooled for Iso-Seq was also performed and showed that 69% of the AS events were tissue-specific. Our data provide abundant transcriptome resources for a transcript isoform catalog of B. napus, which will facilitate genome reannotation, strengthen our understanding of the B. napus transcriptome and be applied for further functional genomic research.


Asunto(s)
Brassica napus/genética , Transcriptoma/genética , Empalme Alternativo/genética , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sistemas de Lectura Abierta/genética , Poliploidía , Alineación de Secuencia , Análisis de Secuencia de ARN , Secuenciación Completa del Genoma
6.
Breast Cancer Res Treat ; 184(2): 567-583, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32779035

RESUMEN

BACKGROUND: As more young patients with breast cancer undergo treatments and obtain good prognoses, the issue of postoperative reproduction in breast cancer patients has attracted more attention. METHODS: We conducted a prospective, cross-sectional survey of 2000 breast cancer-associated physicians using a 24-items questionnaire adapted from prior guides. Then we used a multivariable linear regression model to confirm independent associations between the propensity of physicians' attitudes toward reproduction and physicians' specific demographic characteristics. RESULTS: A total of 911/1249 (72.93%) eligible physicians completed the questionnaire. Regarding the most concerning topic of whether breast cancer patients could conceive, 65 (7.1%) physicians having low and 457 (50.2%) physicians having high propensity for recommending reproduction. For ductal carcinoma in situ (DCIS) after surgery and radiotherapy, 599 (65.8%) physicians did not agree with the recommendation to conceive. 231 (25.4%) highly agree with the recommendation of reproduction for 2 years after surgery in invasive breast cancer patients with lymph nodes-negative. Only 140 (15.4%) physicians did not agree with the recommendation for 5 years after surgery in invasive breast cancer patients with lymph nodes-positive. A total of 861 (94.5%) physicians stated that they advised the patients to consult experts from other disciplines, such as gynecology, oncology, genetic and psychology disciplines. In multivariable analysis, more positive attitude toward reproduction was significantly associated with male, more than 11 times of participating in academic forum on breast cancer, 1-2 times of consulting about reproduction problems after breast cancer surgery per outpatient service and more than 11 min spending on solving the problem about reproduction in early breast cancer. CONCLUSION: This study showed that attitudes towards reproduction of young breast cancer patients from physicians in China. Physicians had a high propensity for recommending reproduction. Compared with the two reproduction guidelines recommendation when to reproduce in different circumstances for breast cancer patients, physicians from China remained a relatively conservative attitude. Most physicians advised the patients to consult experts from other disciplines, such as gynecology, oncology, genetic and psychology disciplines.


Asunto(s)
Neoplasias de la Mama , Médicos , Actitud del Personal de Salud , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/terapia , China/epidemiología , Estudios Transversales , Humanos , Masculino , Pautas de la Práctica en Medicina , Estudios Prospectivos , Reproducción , Encuestas y Cuestionarios
7.
Plant Cell Environ ; 43(7): 1792-1806, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32279333

RESUMEN

Necrotrophic pathogens such as Botrytis cinerea cause significant crop yield losses. Plant CCCH proteins play important roles in pathogen resistance responses. However, the CCCH-mediated defense mechanisms against necrotrophic pathogens are unclear. Here, we report that the Arabidopsis CCCH protein C3H14 positively regulates basal defense against B. cinerea mainly by WRKY33 signaling. Simultaneous mutation of C3H14 and its paralog C3H15 resulted in enhanced susceptibility to B. cinerea, while C3H14 or C3H15 overexpression lines exhibited reduced susceptibility. A large number of differentially expressed genes (DEGs) were present in the c3h14c3h15 double mutant and C3H14 overexpression plants compared with wild-type plants at 24 hr post infection. These DEGs covered over one third of B. cinerea-responsive WRKY33 targets, including genes involved in jasmonic acid (JA)/ethylene (ET) signaling, and camalexin biosynthesis. Genetic analysis indicated that C3H14 mainly depended on WRKY33 to modulate defense against B. cinerea. Moreover, C3H14 activated the WRKY33-ORA59 and -PAD3 cascades to correspondingly control JA/ET- and camalexin-mediated defense responses. However, C3H14 was essential for B. cinerea-induced production of 12-oxo-phytodienoic acid and it also directly mediated ORA59-dependent JA/ET signaling after infection. Therefore, C3H14 may act as a novel transcriptional regulator of the WRKY33-mediated defense pathway.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/inmunología , Botrytis , Enfermedades de las Plantas/inmunología , Proteínas de Unión al ARN/fisiología , Factores de Transcripción/fisiología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Técnicas del Sistema de Dos Híbridos
8.
Br J Nutr ; 123(3): 337-346, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31657292

RESUMEN

Malnutrition and acute kidney injury (AKI) are common complications in hospitalised patients, and both increase mortality; however, the relationship between them is unknown. This is a retrospective propensity score matching study enrolling 46 549 inpatients, aimed to investigate the association between Nutritional Risk Screening 2002 (NRS-2002) and AKI and to assess the ability of NRS-2002 and AKI in predicting prognosis. In total, 37 190 (80 %) and 9359 (20 %) patients had NRS-2002 scores <3 and ≥3, respectively. Patients with NRS-2002 scores ≥3 had longer lengths of stay (12·6 (sd 7·8) v. 10·4 (sd 6·2) d, P < 0·05), higher mortality rates (9·6 v. 2·5 %, P < 0·05) and higher incidence of AKI (28 v. 16 %, P < 0·05) than patients with normal nutritional status. The NRS-2002 showed a strong association with AKI, that is, the risk of AKI changed in parallel with the score of the NRS-2002. In short- and long-term survival, patients with a lower NRS-2002 score or who did not have AKI achieved a significantly lower risk of mortality than those with a high NRS-2002 score or AKI. Univariate Cox regression analyses indicated that both the NRS-2002 and AKI were strongly related to long-term survival (AUC 0·79 and 0·71) and that the combination of the two showed better accuracy (AUC 0·80) than the individual variables. In conclusion, malnutrition can increase the risk of AKI and both AKI and malnutrition can worsen the prognosis that the undernourished patients who develop AKI yield far worse prognosis than patients with normal nutritional status.


Asunto(s)
Lesión Renal Aguda/mortalidad , Hospitalización/estadística & datos numéricos , Desnutrición/mortalidad , Tamizaje Masivo/estadística & datos numéricos , Lesión Renal Aguda/complicaciones , Anciano , China/epidemiología , Femenino , Humanos , Incidencia , Masculino , Desnutrición/diagnóstico , Desnutrición/etiología , Tamizaje Masivo/métodos , Persona de Mediana Edad , Evaluación Nutricional , Estado Nutricional , Pronóstico , Puntaje de Propensión , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo
9.
Ren Fail ; 42(1): 693-703, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32698645

RESUMEN

BACKGROUND: Krüppel-like factor 6 (KLF6) is a transcription factor that participate in various pathophysiological processes, but its contribution in ischemia acute kidney injury (AKI) is lacking so far. The study aimed to investigate the expression and the role of KLF6 in kidney ischemia-reperfusion (IR) injury. METHOD: Microarray data were collected from GSE58438 and GSE52004. The rat IR model was established to evaluate the mRNA and protein expression of KLF6 and inflammatory cytokines in serum and kidney tissues. SiRNA-KLF6 was transfected with HK-2 cells, and then a cell-based hypoxia-reoxygenation (HR) model was established. RESULTS: Bioinformatics showed KLF6 mRNA in kidney tissue is up-regulated in 3 h after IR in rat kidney, which involved in cell activation, leukocyte activation, and response to hydrogen peroxide after IR. The rat IR model results showed that KLF6 expression was peaking at 6 h, and the expression of pro-inflammatory cytokines MCP-1 and TNF-α was increased both in serum and kidney tissues, while anti-inflammatory cytokine IL-10 was decreased after IR. Furthermore, in vitro results showed that KLF6 knock-down reduced the pro-inflammatory cytokines expression. CONCLUSION: These results suggest that (1) KLF6 might be a novel biomarker for early diagnosis of AKI and (2) KLF6 may play a role in promoting inflammation in AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Inflamación/metabolismo , Factor 6 Similar a Kruppel/metabolismo , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/diagnóstico , Animales , Biomarcadores/metabolismo , Línea Celular , Citocinas/metabolismo , Factor 6 Similar a Kruppel/genética , Masculino , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo , Regulación hacia Arriba
10.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779216

RESUMEN

Brassica napus (oilseed rape) is an economically important oil crop worldwide. Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a threat to oilseed rape production. Because the flower petals play pivotal roles in the SSR disease cycle, it is useful to express the resistance-related genes specifically in flowers to hinder further infection with S. sclerotiorum. To screen flower-specific promoters, we first analyzed the transcriptome data from 12 different tissues of the B. napus line ZS11. In total, 249 flower-specific candidate genes with high expression in petals were identified, and the expression patterns of 30 candidate genes were verified by quantitative real-time transcription-PCR (qRT-PCR) analysis. Furthermore, two novel flower-specific promoters (FSP046 and FSP061 promoter) were identified, and the tissue specificity and continuous expression in petals were determined in transgenic Arabidopsis thaliana with fusing the promoters to ß-glucuronidase (GUS)-reporter gene. GUS staining, transcript expression pattern, and GUS activity analysis indicated that FSP046 and FSP061 promoter were strictly flower-specific promoters, and FSP046 promoter had a stronger activity. The two promoters were further confirmed to be able to direct GUS expression in B. napus flowers using transient expression system. The transcriptome data and the flower-specific promoters screened in the present study will benefit fundamental research for improving the agronomic traits as well as disease and pest control in a tissue-specific manner.


Asunto(s)
Brassica napus/genética , Flores/genética , Perfilación de la Expresión Génica/métodos , Regiones Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Especificidad de Órganos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
11.
J Integr Plant Biol ; 61(1): 75-88, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30506639

RESUMEN

Oilseed rape (Brassica napus) is an allotetraploid with two subgenomes descended from a common ancestor. Accordingly, its genome contains syntenic regions with many duplicate genes, some of which may have retained their original functions, whereas others may have diverged. Here, we mapped quantitative trait loci (QTL) for stem rot resistance (SRR), a disease caused by the fungus Sclerotinia sclerotiorum, and flowering time (FT) in a recombinant inbred line population. The population was genotyped using B. napus 60K single nucleotide polymorphism arrays and phenotyped in six (FT) and nine (SSR) experimental conditions or environments. In total, we detected 30 SRR QTL and 22 FT QTL and show that some of the major QTL associated with these two traits were co-localized, suggesting a genetic linkage between them. Two SRR QTL on chromosome A2 and two on chromosome C2 were shown to be syntenic, suggesting the functional conservation of these regions. We used the syntenic properties of the genomic regions to exclude genes for selection candidates responsible for QTL-associated traits. For example, 152 of the 185 genes could be excluded from a syntenic A2-C2 region. These findings will help to elucidate polyploid genomics in future studies, in addition to providing useful information for B. napus breeding programs.


Asunto(s)
Ascomicetos/patogenicidad , Brassica napus/genética , Brassica napus/microbiología , Flores/microbiología , Genoma Bacteriano/genética , Sitios de Carácter Cuantitativo/genética , Brassica napus/fisiología , Flores/genética , Flores/fisiología
12.
J Exp Bot ; 68(18): 5079-5091, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29036633

RESUMEN

Brassica napus is one of the world's most valuable oilseeds and is under constant pressure by the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, the causal agent of white stem rot. Despite our growing understanding of host pathogen interactions at the molecular level, we have yet to fully understand the biological processes and underlying gene regulatory networks responsible for determining disease outcomes. Using global RNA sequencing, we profiled gene activity at the first point of infection on the leaf surface 24 hours after pathogen exposure in susceptible (B. napus cv. Westar) and tolerant (B. napus cv. Zhongyou 821) plants. We identified a family of ethylene response factors that may contribute to host tolerance to S. sclerotiorum by activating genes associated with fungal recognition, subcellular organization, and redox homeostasis. Physiological investigation of redox homeostasis was further studied by quantifying cellular levels of the glutathione and ascorbate redox pathway and the cycling enzymes associated with host tolerance to S. sclerotiorum. Functional characterization of an Arabidopsis redox mutant challenged with the fungus provides compelling evidence into the role of the ascorbate-glutathione redox hub in the maintenance and enhancement of plant tolerance against fungal pathogens.


Asunto(s)
Ascomicetos/fisiología , Brassica napus/genética , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Brassica napus/microbiología , Brassica napus/fisiología , Brassica napus/ultraestructura , Etilenos/metabolismo , Oxidación-Reducción , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Hojas de la Planta/ultraestructura , Tallos de la Planta/genética , Tallos de la Planta/microbiología , Tallos de la Planta/fisiología , Tallos de la Planta/ultraestructura , Análisis de Secuencia de ARN
13.
BMC Genomics ; 16: 653, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26330304

RESUMEN

BACKGROUND: Brassica napus is the third leading source of vegetable oil in the world after soybean and oil palm. The accumulation of gene sequences, especially expressed sequence tags (ESTs) from plant cDNA libraries, has provided a rich resource for genes discovery including potential antimicrobial peptides (AMPs). In this study, we used ESTs including those generated from B. napus cDNA libraries of seeds, pathogen-challenged leaves and deposited in the public databases, as a model, to perform in silico identification and consequently in vitro confirmation of putative AMP activities through a highly efficient system of recombinant AMP prokaryotic expression. RESULTS: In total, 35,788 were generated from cDNA libraries of pathogen-challenged leaves and 187,272 ESTs from seeds of B. napus, and the 644,998 ESTs of B. napus were downloaded from the EST database of PlantGDB. They formed 201,200 unigenes. First, all the known AMPs from the AMP databank (APD2 database) were individually queried against all the unigenes using the BLASTX program. A total of 972 unigenes that matched the 27 known AMP sequences in APD2 database were extracted and annotated using Blast2GO program. Among these unigenes, 237 unigenes from B. napus pathogen-challenged leaves had the highest ratio (1.15 %) in this unigene dataset, which is 13 times that of the unigene datasets of B. napus seeds (0.09 %) and 2.3 times that of the public EST dataset. About 87 % of each EST library was lipid-transfer protein (LTP) (32 % of total unigenes), defensin, histone, endochitinase, and gibberellin-regulated proteins. The most abundant unigenes in the leaf library were endochitinase and defensin, and LTP and histone in the pub EST library. After masking of the repeat sequence, 606 peptides that were orthologous matched to different AMP families were found. The phylogeny and conserved structural motifs of seven AMPs families were also analysed. To investigate the antimicrobial activities of the predicted peptides, 31 potential AMP genes belonging to different AMP families were selected to test their antimicrobial activities after bioinformatics identification. The AMP genes were all optimized according to Escherichia coli codon usage and synthetized through one-step polymerase chain reaction method. The results showed that 28 recombinant AMPs displayed expected antimicrobial activities against E. coli and Micrococcus luteus and Sclerotinia sclerotiorum strains. CONCLUSION: The study not only significantly expanded the number of known/predicted peptides, but also contributed to long-term plant genetic improvement for increased resistance to diverse pathogens of B.napus. These results proved that the high-throughput method developed that combined an in silico procedure with a recombinant AMP prokaryotic expression system is considerably efficient for identification of new AMPs from genome or EST sequence databases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Brassica napus/metabolismo , Simulación por Computador , Etiquetas de Secuencia Expresada , Secuencia de Aminoácidos , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Ascomicetos/efectos de los fármacos , Brassica napus/genética , Electroforesis en Gel de Poliacrilamida , Escherichia coli/efectos de los fármacos , Genes de Plantas , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/biosíntesis
14.
BMC Genomics ; 15: 3, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24383931

RESUMEN

BACKGROUND: Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. RESULTS: Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. CONCLUSION: This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome triplication analysis in B. oleracea, B. rapa and A. thaliana genomes, our study provides insight into the evolutionary history of NBS-encoding genes after divergence of A. thaliana and the Brassica lineage. These results together with expression pattern analysis of NBS-encoding orthologous genes provide useful resource for functional characterization of these genes and genetic improvement of relevant crops.


Asunto(s)
Arabidopsis/genética , Brassica/genética , Genoma de Planta , Arabidopsis/clasificación , Sitios de Unión , Brassica/clasificación , Mapeo Cromosómico , Análisis por Conglomerados , Hibridación Genómica Comparativa , Resistencia a la Enfermedad , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Filogenia , Análisis de Secuencia de ARN
15.
BMC Genomics ; 14: 689, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24098974

RESUMEN

BACKGROUND: The species Brassica rapa (2n=20, AA) is an important vegetable and oilseed crop, and serves as an excellent model for genomic and evolutionary research in Brassica species. With the availability of whole genome sequence of B. rapa, it is essential to further determine the activity of all functional elements of the B. rapa genome and explore the transcriptome on a genome-wide scale. Here, RNA-seq data was employed to provide a genome-wide transcriptional landscape and characterization of the annotated and novel transcripts and alternative splicing events across tissues. RESULTS: RNA-seq reads were generated using the Illumina platform from six different tissues (root, stem, leaf, flower, silique and callus) of the B. rapa accession Chiifu-401-42, the same line used for whole genome sequencing. First, these data detected the widespread transcription of the B. rapa genome, leading to the identification of numerous novel transcripts and definition of 5'/3' UTRs of known genes. Second, 78.8% of the total annotated genes were detected as expressed and 45.8% were constitutively expressed across all tissues. We further defined several groups of genes: housekeeping genes, tissue-specific expressed genes and co-expressed genes across tissues, which will serve as a valuable repository for future crop functional genomics research. Third, alternative splicing (AS) is estimated to occur in more than 29.4% of intron-containing B. rapa genes, and 65% of them were commonly detected in more than two tissues. Interestingly, genes with high rate of AS were over-represented in GO categories relating to transcriptional regulation and signal transduction, suggesting potential importance of AS for playing regulatory role in these genes. Further, we observed that intron retention (IR) is predominant in the AS events and seems to preferentially occurred in genes with short introns. CONCLUSIONS: The high-resolution RNA-seq analysis provides a global transcriptional landscape as a complement to the B. rapa genome sequence, which will advance our understanding of the dynamics and complexity of the B. rapa transcriptome. The atlas of gene expression in different tissues will be useful for accelerating research on functional genomics and genome evolution in Brassica species.


Asunto(s)
Brassica rapa/genética , Análisis de Secuencia de ADN , Estadística como Asunto , Transcriptoma/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Empalme Alternativo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Genes (Basel) ; 14(7)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37510325

RESUMEN

SRS (SHI-related sequence) transcription factors play a crucial role in plant growth, development, and abiotic stress response. Although Brassica napus (B. napus) is one of the most important oil crops in the world, the role of SRS genes in B. napus (BnSRS) has not been well investigated. Therefore, we employed a bioinformatics approach to identify BnSRS genes from genomic data and investigated their characteristics, functions, and expression patterns, to gain a better understanding of how this gene family is involved in plant development and growth. The results revealed that there were 34 BnSRS gene family members in the genomic sequence of B. napus, unevenly distributed throughout the sequence. Based on the phylogenetic analysis, these BnSRS genes could be divided into four subgroups, with each group sharing comparable conserved motifs and gene structure. Analysis of the upstream promoter region showed that BnSRS genes may regulate hormone responses, biotic and abiotic stress response, growth, and development in B. napus. The protein-protein interaction analysis revealed the involvement of BnSRS genes in various biological processes and metabolic pathways. Our analysis of BnSRS gene expression showed that 23 BnSRS genes in the callus tissue exhibited a dominant expression pattern, suggesting their critical involvement in cell dedifferentiation, cell division, and tissue development. In addition, association analysis between genotype and agronomic traits revealed that BnSRS genes may be linked to some important agronomic traits in B. napus, suggesting that BnSRS genes were widely involved in the regulation of important agronomic traits (including C16.0, C18.0, C18.1, C18.2 C18.3, C20.1, C22.1, GLU, protein, TSW, and FFT). In this study, we predicted the evolutionary relationships and potential functions of BnSRS gene family members, providing a basis for the development of BnSRS gene functions which could facilitate targeted functional studies and genetic improvement for elite breeding in B. napus.


Asunto(s)
Brassica napus , Brassica napus/metabolismo , Filogenia , Fitomejoramiento , Redes y Vías Metabólicas , Regiones Promotoras Genéticas
17.
Open Life Sci ; 18(1): 20220656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37589009

RESUMEN

The aim of this study is to explore a novel classification and investigate the clinical significance of hepatocellular carcinoma (HCC) cells. We analyzed integrated single-cell RNA sequencing and bulk RNA-seq data obtained from HCC samples. Cell trajectory analysis divided HCC cells into three subgroups with different differentiation states: state 1 was closely related to phosphoric ester hydrolase activity, state 2 was involved in eukaryotic initiation factor 4E binding, translation regulator activity and ribosome, and state 3 was associated with oxidoreductase activity and metabolism. Three molecular classes based on HCC differentiation-related genes (HDRGs) from HCC samples were identified, which revealed immune checkpoint gene expression and overall survival (OS) of HCC patients. Moreover, a prognostic risk scoring (RS) model was generated based on eight HDRGs, and the results showed that the OS of the high-risk group was worse than that of the low-risk group. Further, potential therapeutic drugs were screened out based on eight prognostic RS-HDRGs. This study highlights the importance of HCC cell differentiation in immunotherapy, clinical prognosis, and potential molecular-targeted drugs for HCC patients, and proposes a direction for the development of individualized treatments for HCC.

18.
Biotechnol Biofuels Bioprod ; 16(1): 86, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37217949

RESUMEN

BACKGROUND: Oilseed rape (Brassica napus L.) is known as one of the most important oilseed crops cultivated around the world. However, its production continuously faces a huge challenge of Sclerotinia stem rot (SSR), a destructive disease caused by the fungus Sclerotinia sclerotiorum, resulting in huge yield loss annually. The SSR resistance in B. napus is quantitative and controlled by a set of minor genes. Identification of these genes and pyramiding them into a variety are a major strategy for SSR resistance breeding in B. napus. RESULTS: Here, we performed a genome-wide association study (GWAS) using a natural population of B. napus consisting of 222 accessions to identify BnaA08g25340D (BnMLO2_2) as a candidate gene that regulates the SSR resistance. BnMLO2_2 was a member of seven homolog genes of Arabidopsis Mildew Locus O 2 (MLO2) and the significantly SNPs were mainly distributed in the promoter of BnMLO2_2, suggesting a role of BnMLO2_2 expression level in the regulation of SSR resistance. We expressed BnMLO2_2 in Arabidopsis and the transgenic plants displayed an enhanced SSR resistance. Transcriptome profiling of different tissues of B. napus revealed that BnMLO2_2 had the most expression level in leaf and silique tissues among all the 7 BnMLO2 members and also expressed higher in the SSR resistant accession than in the susceptible accession. In Arabidopsis, mlo2 plants displayed reduced resistance to SSR, whereas overexpression of MLO2 conferred plants an enhanced SSR resistance. Moreover, a higher expression level of MLO2 showed a stronger SSR resistance in the transgenic plants. The regulation of MLO2 in SSR resistance may be associated with the cell death. Collinearity and phylogenetic analysis revealed a large expansion of MLO family in Brassica crops. CONCLUSION: Our study revealed an important role of BnMLO2 in the regulation of SSR resistance and provided a new gene candidate for future improvement of SSR resistance in B. napus and also new insights into understanding of MLO family evolution in Brassica crops.

19.
Clin Kidney J ; 16(11): 1993-2002, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37915910

RESUMEN

Background: Acute kidney disease (AKD) defines patients with acute kidney injury (AKI) or subacute loss of kidney function lasting for >7 days. Little is known about the prognosis of AKD in hospitalized patients. The aim of this study was to investigate the risk factors and prognosis of AKD and to compare different types of acute/subacute renal impairment among Chinese inpatients. Methods: Complete data were available for 71 041 patients for a range of 5-63 months. AKI and AKD were diagnosed based on the Acute Disease Quality Initiative criteria of 2017. Results: Of 71 041 inpatients, 16 098 (22.7%) patients developed AKI or AKD; 5895 (8.3%) AKI patients recovered within 7 days, 5623 (7.9%) AKI patients developed AKD and 4580 (6.4%) patients developed AKD without AKI. Mortality was proportional to stages of AKI and AKD (P < .05), while AKI followed by AKD was associated with a higher risk of long-term mortality [hazard ratio (HR) 4.51] as compared with AKD without AKI (HR 2.25) and recovery from AKI (HR 1.18). The AKD criteria were robustly associated with overall survival [area under the receiver operating characteristic curve (AUROC) 0.71] and de novo CKD (AUROC 0.71), while the AKI criteria showed a relatively lower ability to fit the risk of overall survival (AUROC 0.65) and CKD (AUROC 0.63). Conclusions: AKD and AKD stages are useful clinical definitions for clinical practice, as they predict unfortunate clinical outcomes such as overall long-term mortality and CKD. Research activities should focus on AKD.

20.
BMC Biotechnol ; 12: 10, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22439858

RESUMEN

BACKGROUND: To facilitate the screening of large quantities of new antimicrobial peptides (AMPs), we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity. RESULTS: Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an in vivo recombination strategy. Each AMP was then expressed as an Npro fusion protein in Escherichia coli. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On in vitro refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against E. coli, Micrococcus luteus and S. cerevisia. CONCLUSIONS: The method described in this report allows the fast synthesis of genes that are optimized for over-expression in E. coli and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a/His-EDDIE-GFP also provides green/white colony selection for high-throughput recombinant AMP cloning.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/biosíntesis , Clonación Molecular/métodos , Endopeptidasas/biosíntesis , Reacción en Cadena de la Polimerasa/métodos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Virales/biosíntesis , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Replegamiento Proteico , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA