Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Obes Metab Syndr ; 33(2): 177-188, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699871

RESUMEN

Background: AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms. Methods: Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study. Results: Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 µM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 µM) significantly reversed these effects. Conclusion: ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.

2.
Antioxidants (Basel) ; 9(10)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992548

RESUMEN

Magnolol (MG) is the main active compound of Magnolia officinalis and exerts a wide range of biological activities. In this study, we investigated the effects of MG using tyloxapol (Tylo)-induced (200 mg/kg, i.p.) hyperlipidemia in rats and palmitic acid (PA)-stimulated (0.3 mM) HepG2 cells. Our results showed that Tylo injection significantly increased plasma levels of triglyceride and cholesterol as well as superoxide anion in the livers, whereas MG pretreatment reversed these changes. MG reduced hepatic lipogenesis by attenuating sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) proteins and Srebp-1, Fas, Acc, and Cd36 mRNA expression as well as upregulated the lipolysis-associated genes Hsl, Mgl, and Atgl. Furthermore, MG reduced plasma interleukin-1ß (IL-1ß) and protein expression of NLR family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and caspase 1 as well as upregulated nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and induction of heme oxygenase-1 (HO-1) in hepatocytes of Tylo-treated rats. Enhanced autophagic flux by elevation of autophagy related protein 5-12 (ATG5-12), ATG7, Beclin1, and microtubule-associated protein light chain 3 B II (LC3BII)/LC3BI ratio, and reduction of sequestosome-1 (SQSTM1/p62) and phosphorylation of mTOR was observed by MG administration. However, autophagy inhibition with 3-methyladenine (3-MA) in HepG2 cells drastically abrogated the MG-mediated suppression of inflammation and lipid metabolism. In conclusion, MG inhibited hepatic steatosis-induced NLRP3 inflammasome activation through the restoration of autophagy to promote HO-1 signaling capable of ameliorating oxidative stress and inflammatory responses.

3.
J Nutr Biochem ; 67: 111-122, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30884354

RESUMEN

Estrogen deficiency in postmenopausal women is linked to the higher prevalence of obesity, type 2 diabetes and metabolic syndromes. Development of beige adipocytes (browning of WAT) increases energy expenditure and could be a promising strategy for obesity management. This study aimed to investigate the effects of phytoestrogen genistein (GEN) on white adipose tissue (WAT) inflammation, browning and hepatic lipogenesis in ovariectomized rats with high-fat diet (HFD) and further explore the underlying mechanism. Female Wistar rats received ovariectomy (Ovx) and HFD (45% fat) and then were administered with 17ß-estradiol (E2, 3 times/week, subcutaneously) or GEN (15 mg/kg or 30 mg/kg, gavage, once daily) for 4 weeks. Administration of GEN decreased Ovx-induced body weight gain and adiposity and improved insulin sensitivity as well as increased insulin signaling p-IRS1 and p-AKT in retroperitoneal WAT. Adipocyte hypertrophy and production of proinflammatory cytokines MCP-1, TNF-α and IL-6 were reduced by GEN. It also suppressed the activation of NF-κB pathway evidenced by attenuation of p65 and phospho-IκB levels. Additionally, GEN elevated myokine irisin and promoted WAT browning by increasing UCP-1, PRDM-16, PGC-1α and CIDEA proteins and Ppargc1a, Ucp-1 and Tbx-1 mRNA in inguinal WAT which is associated with up-regulation of nuclear estrogen receptor-α. Plasma levels of triglyceride and cholesterol were reduced by GEN treatment accompanied with inhibition of lipogenic proteins (p-ACC, SREBP-1, FAS and CD36) in the liver. Long-term treatment with GEN attenuated estrogen-deficiency-induced obesity, WAT inflammation and hepatic lipogenesis and promoted the induction of WAT browning. It may provide a promising approach to prevent obesity during menopause.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Genisteína/farmacología , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/patología , Adiponectina/sangre , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Femenino , Fibronectinas/sangre , Insulina/sangre , Hígado/metabolismo , Ovariectomía , Paniculitis/tratamiento farmacológico , Paniculitis/etiología , Ratas Wistar , Proteína Desacopladora 1/metabolismo
4.
Menopause ; 24(8): 959-969, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28350760

RESUMEN

OBJECTIVE: Accumulating evidence demonstrates that raloxifene, a selective estrogen receptor modulator, possesses anti-inflammatory action. This study evaluates the preventive effects of long-term treatment of raloxifene on acute inflammation and multiple organ dysfunction syndrome (MODS) in ovariectomized (OVX) rats with endotoxemia and its underlying mechanism of action. METHODS: Adult female rats were OVX bilaterally to induce estrogen insufficiency. OVX rats were administered with raloxifene (1 mg/kg, gavage, once daily) for 8 weeks, beginning 1 week after surgery, followed by induction of sepsis via intravenous infusion of lipopolysaccharides (LPS; 30 mg/kg) for 4 hours. LPS-activated RAW 264.7 cells were used to investigate the mechanism of raloxifene. RESULTS: Ovariectomy amplified the endotoxemia-induced hypotensive effect, MODS, and superoxide anion production in the myocardium. The levels of inducible nitric oxide synthase, high mobility group box 1, and nuclear factor-κB p65 protein increased in OVX rats 6 hours after LPS initiation. Raloxifene mitigated MODS, together with reduced inducible nitric oxide synthase induction and fewer superoxide anions in organs. Raloxifene induced high levels of heat shock protein 70 (HSP70) and heme oxygenase 1 (HO-1), which are associated with an increase in the transcription factor heat shock factor-1 and Nrf-2, respectively. Pretreatment with quercetin, an inhibitor of HSP70, or SnPP, an inhibitor of HO-1, reversed the protective effects of raloxifene in septic OVX rats and LPS-activated macrophages. CONCLUSIONS: Long-term treatment with raloxifene reduces the severity of sepsis in OVX rats, attributed from up-regulation of HSP70 and HO-1 to exert the antioxidant and anti-inflammatory capacities. These findings provide new insights into bacterial infection during menopause and the molecular mechanism of raloxifene.


Asunto(s)
Endotoxemia/tratamiento farmacológico , Insuficiencia Multiorgánica/tratamiento farmacológico , Ovariectomía , Clorhidrato de Raloxifeno/uso terapéutico , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Administración Oral , Animales , Modelos Animales de Enfermedad , Endotoxemia/metabolismo , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Hemo-Oxigenasa 1/metabolismo , Insuficiencia Multiorgánica/metabolismo , Clorhidrato de Raloxifeno/administración & dosificación , Ratas , Ratas Wistar , Moduladores Selectivos de los Receptores de Estrógeno/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA