Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 177, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773440

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors worldwide, with extremely aggressive and complicated biology. Krüppel-like factors (KLFs) encode a series of transcriptional regulatory proteins and play crucial roles in a variety of processes, including tumor cell differentiation and proliferation. However, the potential biological functions and possible pathways of KLFs in the progression of PDAC remain elusive. METHODS: We systematically evaluated the transcriptional variations and expression patterns of KLFs in pancreatic cancer from the UCSC Xena. Based on difference analysis, the non-negative matrix factorization (NMF) algorithm was utilized to identify the immune characteristics and clinical significance of two different subtypes. The multivariate Cox regression was used to construct the risk model and then explore the differences in tumor immune microenvironment (TIME) and drug sensitivity between high and low groups. Through single-cell RNA sequencing (scRNA-seq) analysis, we screened KLF6 and further investigated its biological functions in pancreatic cancer and pan-cancer. RESULTS: The KLFs exhibited differential expression and mutations in the transcriptomic profile of PDAC. According to the expression of KLFs, patients were classified into two distinct subtypes, each exhibiting significant differences in prognosis and TIME. Moreover, the KLF signature was developed using univariate Cox and Lasso regression, which proved to be a reliable and effective prognostic model. Furthermore, the KLF_Score was closely associated with immune infiltration, response to immunotherapy, and drug sensitivity and we screened small molecule compounds targeting prognostic genes separately. Through scRNA-seq analysis, KLF6 was selected to further demonstrate its role in the malignance of PC in vitro. Finally, pan-cancer analysis emphasized the biological significance of KLF6 in multiple types of tumors and its clinical utility in assessing cancer prognosis. CONCLUSION: This study elucidated the pivotal role of KLF family genes in the malignant development of PC through comprehensive analysis and revealed that KLF6 would be a novel diagnostic biomolecule marker and potential therapeutic target for PDAC.

2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941676

RESUMEN

Chronic inflammatory diseases like rheumatoid arthritis are characterized by a deficit in fully functional regulatory T cells. DNA-methylation inhibitors have previously been shown to promote regulatory T cell responses and, in the present study, we evaluated their potential to ameliorate chronic and acute animal models of rheumatoid arthritis. Of the drugs tested, decitabine was the most effective, producing a sustained therapeutic effect that was dependent on indoleamine 2,3-dioxygenase (IDO) and was associated with expansion of induced regulatory T cells, particularly at the site of disease activity. Treatment with decitabine also caused apoptosis of Th1 and Th17 cells in active arthritis in a highly selective manner. The molecular basis for this selectivity was shown to be ENT1, a nucleoside transporter, which facilitates intracellular entry of the drug and is up-regulated on effector T cells during active arthritis. It was further shown that short-term treatment with decitabine resulted in the generation of a population of regulatory T cells that were able to suppress arthritis upon adoptive transfer. In summary, a therapeutic approach using an approved drug is described that treats active inflammatory disease effectively and generates robust regulatory T cells with the IDO-dependent capacity to maintain remission.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Decitabina/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Células TH1/efectos de los fármacos , Células Th17/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Desmetilación del ADN/efectos de los fármacos , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/inmunología , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Inducción de Remisión , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Células TH1/citología , Células TH1/inmunología , Células Th17/citología , Células Th17/inmunología
3.
J Autoimmun ; 138: 103031, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37229811

RESUMEN

The aim of this study was to assess the L-type amino acid transporter-1 (LAT1) as a possible therapeutic target for rheumatoid arthritis (RA). Synovial LAT1 expression in RA was monitored by immunohistochemistry and transcriptomic datasets. The contribution of LAT1 to gene expression and immune synapse formation was assessed by RNA-sequencing and total internal reflection fluorescent (TIRF) microscopy, respectively. Mouse models of RA were used to assess the impact of therapeutic targeting of LAT1. LAT1 was strongly expressed by CD4+ T cells in the synovial membrane of people with active RA and the level of expression correlated with levels of ESR and CRP as well as DAS-28 scores. Deletion of LAT1 in murine CD4+ T cells inhibited the development of experimental arthritis and prevented the differentiation of CD4+ T cells expressing IFN-γ and TNF-α, without affecting regulatory T cells. LAT1 deficient CD4+ T cells demonstrated reduced transcription of genes associated with TCR/CD28 signalling, including Akt1, Akt2, Nfatc2, Nfkb1 and Nfkb2. Functional studies using TIRF microscopy revealed a significant impairment of immune synapse formation with reduced recruitment of CD3ζ and phospho-tyrosine signalling molecules in LAT1 deficient CD4+ T cells from the inflamed joints but not the draining lymph nodes of arthritic mice. Finally, it was shown that a small molecule LAT1 inhibitor, currently undergoing clinical trials in man, was highly effective in treating experimental arthritis in mice. It was concluded that LAT1 plays a critical role in activation of pathogenic T cell subsets under inflammatory conditions and represents a promising new therapeutic target for RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratones , Animales , Membrana Sinovial , Subgrupos de Linfocitos T , Linfocitos T Reguladores/metabolismo , Transducción de Señal , Artritis Experimental/genética , Linfocitos T CD4-Positivos
4.
Int J Med Sci ; 20(10): 1339-1357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37786443

RESUMEN

Long non-coding RNAs are considered to be key regulatory factors of oncogenesis and tumor progression. It is reported that LINC00460 plays the role of oncogene in some tumors. However, LINC00460's role and mechanism of action in pancreatic cancer have not yet been fully elucidated. We identified LINC00460 by analyzing data from the Gene Expression Omnibus database. The role of LINC00460 in proliferation and metastasis was examined using CCK8, colony formation, wound healing, and transwell assays. The potential mechanisms of LINC00460 in regulating mRNA levels were elucidated by RNA pull-down, RNA immunoprecipitation, Chromatin immunoprecipitation, Co-immunoprecipitation, and Immunofluorescence assays. The results showed that LINC00460 was upregulated in pancreatic cancer cells and tissues. Highly expressed LINC00460 is significantly related to short survival of pancreatic cancer patients. Inhibition of LINC00460 attenuated pancreatic cancer cell proliferation and metastasis, whereas its overexpression reversed this effect. Mechanically, LINC00460 is induced by hypoxia, through binding of the hypoxia-inducible factor 1-α in the promoter region of LINC00460. Furthermore, LINC00460 functioned as an miR-4689 sponge to regulate the downstream target gene UBE2V1, enhancing the stability of mutant p53 in pancreatic cancer cells. LINC00460 also further promotes pancreatic cancer development by sequestering USP10, a cytoplasmic ubiquitin-specific protease that deubiquitinates p53 and enhances its stability. Collectively, our study demonstrated that LINC00460 is a hypoxia-induced lncRNA that plays the role of oncogene in pancreatic cancer by modulating the miR-4689/UBE2V1 axis, sequestering USP10, and ultimately enhancing the stability of mutant p53.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas/genética , Proliferación Celular/genética , Hipoxia , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Factores de Transcripción/genética , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
5.
Opt Express ; 30(19): 34140-34148, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242434

RESUMEN

A high-performance optical filter is proposed and realized with multimode waveguide grating (MWG) and two-mode multiplexers on the x-cut lithium-niobate-on-insulator (LNOI) platform for the first time, to the best of our knowledge. The present optical filter is designed appropriately to avoid material anisotropy as well as mode hybridness, and has a low excess loss of 0.05 dB and a high sidelobe suppression ratio (SLSR) of 32 dB in theory with Gaussian apodization. The fabricated filters show a box-like response with 1-dB bandwidth of 6-23 nm, excess loss of ∼0.15 dB, sidelobe suppression ratio of >26 dB. The device performance is further improved with a sidelobe suppression ratio as high as 48 dB and a low excess loss of ∼0.25 dB by cascading two identical MWGs.

6.
Circ Res ; 127(6): 811-823, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32546048

RESUMEN

RATIONALE: Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of HDAC (histone deacetylase)-9 in atherosclerosis and its clinical complications including stroke and myocardial infarction. OBJECTIVE: To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. METHODS AND RESULTS: We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further used 2-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content while increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKK (inhibitory kappa B kinase)-α and ß, resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting proinflammatory responses in macrophages. Transcriptional profiling using RNA sequencing revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKß. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL (interleukin)-1ß and IL-6. CONCLUSIONS: Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation. Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
Arterias/enzimología , Aterosclerosis/enzimología , Histona Desacetilasas/metabolismo , Quinasa I-kappa B/metabolismo , Placa Aterosclerótica , Proteínas Represoras/metabolismo , Acetilación , Anciano , Anciano de 80 o más Años , Animales , Arterias/efectos de los fármacos , Arterias/patología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/patología , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Células Endoteliales/patología , Activación Enzimática , Femenino , Fibrosis , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Humanos , Quinasa I-kappa B/genética , Mediadores de Inflamación/metabolismo , Rodamiento de Leucocito , Macrófagos/enzimología , Macrófagos/patología , Masculino , Ratones Noqueados para ApoE , Persona de Mediana Edad , Monocitos/enzimología , Monocitos/patología , Unión Proteica , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 116(43): 21666-21672, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31597740

RESUMEN

Regulatory T (Treg) cells expressing the transcription factor Foxp3 play an important role in maintaining immune homeostasis. Chronic inflammation is associated with reduced Foxp3 expression, function, and loss of phenotypic stability. Previous studies have established the importance of TNF receptor 2 (TNFR2) in the generation and/or activation of Treg cells. In this study, we assess the importance of TNFR2 in healthy mice and under inflammatory conditions. Our findings reveal that, in health, TNFR2 is important not only for the generation of Treg cells, but also for regulating their functional activity. We also show that TNFR2 maintains Foxp3 expression in Treg cells by restricting DNA methylation at the Foxp3 promoter. In inflammation, loss of TNFR2 results in increased severity and chronicity of experimental arthritis, reduced total numbers of Treg cells, reduced accumulation of Treg cells in inflamed joints, and loss of inhibitory activity. In addition, we demonstrate that, under inflammatory conditions, loss of TNFR2 causes Treg cells to adopt a proinflammatory Th17-like phenotype. It was concluded that TNFR2 signaling is required to enable Treg cells to promote resolution of inflammation and prevent them from undergoing dedifferentiation. Consequently, TNFR2-specific agonists or TNF1-specific antagonists may be useful in the treatment of autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Metilación de ADN/genética , Factores de Transcripción Forkhead/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Regiones Promotoras Genéticas/genética
8.
Opt Express ; 29(12): 17710-17717, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154047

RESUMEN

Optical communication wavelength is being extended from the near-infrared band of 1.31/1.55 µm to the mid-infrared band of 2 µm or beyond for satisfying the increasing demands for high-capacity long-distance data transmissions. An efficient electro-optic (EO) modulator working at 2 µm is highly desired as one of the indispensable elements for optical systems. Lithium niobate (LiNbO3) with a large second-order nonlinear coefficient is widely used in various EO modulators. Here, we experimentally demonstrate the first Mach-Zehnder EO modulator working at 2 µm based on the emerging thin-film LiNbO3 platform. The demonstrated device exhibits a voltage-length product of 3.67 V·cm and a 3-dB-bandwidth of >22 GHz which is limited by the 18 GHz response bandwidth of the photodetector available in the lab. Open eye-diagrams of the 25 Gb/s on-off keying (OOK) signals modulated by the fabricated Mach-Zehnder EO modulator is also measured experimentally with a SNR of about 14 dB.

9.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672989

RESUMEN

Epidermal growth factor receptor (EGFR) specific therapeutics is of great importance in cancer treatment. Fcy-hEGF fusion protein, composed of yeast cytosine deaminase (Fcy) and human EGF (hEGF), is capable of binding to EGFR and enzymatically convert 5-fluorocytosine (5-FC) to 1000-fold toxic 5-fluorocuracil (5-FU), thereby inhibiting the growth of EGFR-expressing tumor cells. To develop EGFR-specific therapy, 188Re-liposome-Fcy-hEGF was constructed by insertion of Fcy-hEGF fusion protein onto the surface of liposomes encapsulating of 188Re. Western blotting, MALDI-TOF, column size exclusion and flow cytometry were used to confirm the conjugation and bio-activity of 188Re-liposome-Fcy-hEGF. Cell lines with EGFR expression were subjected to treat with 188Re-liposome-Fcy-hEGF/5-FC in the presence of 5-FC. The 188Re-liposome-Fcy-hEGF/5-FC revealed a better cytotoxic effect for cancer cells than the treatment of liposome-Fcy-hEGF/5-FC or 188Re-liposome-Fcy-hEGF alone. The therapeutics has radio- and chemo-toxicity simultaneously and specifically target to EGFR-expression tumor cells, thereby achieving synergistic anticancer activity.


Asunto(s)
Citosina Desaminasa/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fluorouracilo/farmacología , Neoplasias/metabolismo , Radiofármacos/farmacología , Antimetabolitos Antineoplásicos/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Citosina Desaminasa/química , Factor de Crecimiento Epidérmico/química , Flucitosina/metabolismo , Fluorouracilo/metabolismo , Humanos , Liposomas/química , Células MCF-7 , Neoplasias/patología , Unión Proteica , Radioisótopos/química , Radiofármacos/química , Renio/química
10.
J Cell Sci ; 129(11): 2156-69, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27068534

RESUMEN

GPR56 is an adhesion-class G-protein-coupled receptor responsible for bilateral frontoparietal polymicrogyria (BFPP), a severe disorder of cortical formation. Additionally, GPR56 is involved in biological processes as diverse as hematopoietic stem cell generation and maintenance, myoblast fusion, muscle hypertrophy, immunoregulation and tumorigenesis. Collagen III and tissue transglutaminase 2 (TG2) have been revealed as the matricellular ligands of GPR56 involved in BFPP and melanoma development, respectively. In this study, we identify heparin as a glycosaminoglycan interacting partner of GPR56. Analyses of truncated and mutant GPR56 proteins reveal two basic-residue-rich clusters, R(26)GHREDFRFC(35) and L(190)KHPQKASRRP(200), as the major heparin-interacting motifs that overlap partially with the collagen III- and TG2-binding sites. Interestingly, the GPR56-heparin interaction is modulated by collagen III but not TG2, even though both ligands are also heparin-binding proteins. Finally, we show that the interaction with heparin reduces GPR56 receptor shedding, and enhances cell adhesion and motility. These results provide novel insights into the interaction of GPR56 with its multiple endogenous ligands and have functional implications in diseases such as BFPP and cancer.


Asunto(s)
Adhesión Celular , Movimiento Celular , Heparina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Células HEK293 , Heparina/química , Humanos , Ligandos , Microdominios de Membrana/metabolismo , Invasividad Neoplásica , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Mapeo de Interacción de Proteínas , Proteína Quinasa C-alfa/metabolismo , Receptores Acoplados a Proteínas G/química , Proteína de Unión al GTP rhoA/metabolismo
11.
Cytokine ; 101: 19-25, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33730773

RESUMEN

Tumour necrosis factor-α (TNF-α) is a highly pleiotropic cytokine with effects on multiple pathological and physiological functions via two distinct receptors, TNFR1 and TNFR2. Much of the pro- inflammatory action of TNF-α is mediated by TNFR1 whereas TNFR2 is thought to play an immunoregulatory and tissue protective role. Anti-TNF- α biologics have been extremely successful in treating a number of immune mediated pathologies, including rheumatoid arthritis, ankylosing spondylitis, psoriasis, psoriatic arthritis and inflammatory bowel disease. However, anti-TNF therapy has been shown to induce systemic lupus erythematosus and psoriasis in some patients, and to be deleterious in multiple sclerosis. It is hypothesized that these paradoxical effects of anti-TNF-α are due to inhibition of TNFR2 signalling. In this review, we will focus on the biology and pathophysiologic role of TNF-α and on the therapeutic implications of targeting TNF-α receptor signalling.

12.
Ann Hematol ; 97(8): 1317-1325, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29750316

RESUMEN

The aim of the present study was to determine whether circulating soluble CD23 (sCD23) was associated with B cells non-Hodgkin's lymphomas (B-NHL). PubMed, EMBASE, and ISI Web of Science were extensively searched without language restriction. Data was extracted in a standardized data collection sheet after two reviewers scanned studies independently. The association between sCD23 and NHL was indicated as odds ratio (OR) along with its related 95% confidence interval (95% CI). Meta-analysis was conducted via RevMan 5.3. A total of five studies, which included 964 B-NHL patients and 1243 matched controls without B-NHL, among which 257 were HIV-positive donors and 986 were general controls, were included in our study. Meta-analysis revealed a significant association between peripheral sCD23 level and B-NHL in HIV-positive samples (OR 1.66, 95% CI 1.25, 2.20; P = 0.0005) as well as the general population (OR 2.51; 95% CI 1.71, 3.86; P < 0.00001). Meta-analysis, stratified by sampling time prior to diagnosis, indicated potential HIV-NHL patients are 2.34-folds more likely to have higher blood sCD23 level, although this association is statistically meaningful only during 3-5 years prior to diagnosis (95% CI 1.27, 4.33). Subgroup analysis based on B-NHL type demonstrated a significant association between sCD23 level and diffuse large B cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), and follicular lymphoma (FL). The findings of our study indicate a positive association of circulating sCD23 level and B-NHL risks and highlight the possibility of sCD23 as a predictive marker of B-NHL. However, to better understand the underlying mechanism, further studies are needed.


Asunto(s)
Infecciones por VIH/sangre , VIH-1 , Linfoma de Células B/sangre , Proteínas de Neoplasias/sangre , Receptores de IgE/sangre , Femenino , Humanos , Masculino , Factores de Riesgo
13.
Biochem Biophys Res Commun ; 473(4): 973-979, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27045081

RESUMEN

Non-depleting YTS177 anti-CD4 monoclonal antibody (MoAb) has been reported to lead to antigen-specific immunotolerance in allograft transplantation and autoimmune diabetes, as well as possibly to inhibition of allergic inflammation in mice. However, the molecular mechanisms underlying hyporesponsive T cell responses induced by YTS177 MoAb remain elusive. Herein, we demonstrate that the YTS177 MoAb increases the levels of anergy factors p27(kip1) and Cbl-b, inhibits IL-2 production, and impairs calcium mobilization in activated T cells in vitro. YTS177 MoAb suppresses OVA-driven proliferation of DO11.10 CD4(+) T cells in vivo as well. Mechanistically, YTS177 MoAb induces tolerance by causing CD4 down-regulation through clathrin-dependent and raft dissociation. The results obtained in this study lead us to propose novel protective or curative approaches to CD4 T cell-mediated diseases.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos CD4/inmunología , Anergia Clonal , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Antígenos CD4/metabolismo , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Femenino , Microdominios de Membrana/metabolismo , Ratones Endogámicos BALB C , Linfocitos T Colaboradores-Inductores/efectos de los fármacos
14.
Best Pract Res Clin Rheumatol ; : 101941, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38538489

RESUMEN

TNF signals via two receptors, TNFR1 and TNFR2, which play contrasting roles in immunity. Most of the pro-inflammatory effects of TNF are mediated by TNFR1, whereas TNFR2 is mainly involved in immune homeostasis and tissue healing, but also contributes to tumour progression. However, all currently available anti-TNF biologics inhibit signalling via both receptors and there is increasing interest in the development of selective inhibitors; TNFR1 inhibitors for autoimmune disease and TNFR2 inhibitors for cancer. It is hypothesised that selective inhibition of TNFR1 in autoimmune disease would alleviate inflammation and promote homeostasis by allowing TNFR2 signalling to proceed unimpeded. Validation of this concept would pave the way for the development and testing of TNF specific antagonists. Another therapeutic approach being explored is the use of TNFR2 specific agonists, which could be administered alone or in combination with a TNFR1 antagonist.

15.
J Biol Chem ; 286(16): 14215-25, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21349848

RESUMEN

Loss-of-function mutations in the gene encoding G protein-coupled receptor 56 (GPR56) lead to bilateral frontoparietal polymicrogyria (BFPP), an autosomal recessive disorder affecting brain development. The GPR56 receptor is a member of the adhesion-GPCR family characterized by the chimeric composition of a long ectodomain (ECD), a GPCR proteolysis site (GPS), and a seven-pass transmembrane (7TM) moiety. Interestingly, all identified BFPP-associated missense mutations are located within the extracellular region of GPR56 including the ECD, GPS, and the extracellular loops of 7TM. In the present study, a detailed molecular and functional analysis of the wild-type GPR56 and BFPP-associated point mutants shows that individual GPR56 mutants most likely cause BFPP via different combination of multiple mechanisms. These include reduced surface receptor expression, loss of GPS proteolysis, reduced receptor shedding, inability to interact with a novel protein ligand, and differential distribution of the 7TM moiety in lipid rafts. These results provide novel insights into the cellular functions of GPR56 receptor and reveal molecular mechanisms whereby GPR56 mutations induce BFPP.


Asunto(s)
Malformaciones del Desarrollo Cortical/genética , Mutación Puntual , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Glicosaminoglicanos/química , Humanos , Microdominios de Membrana , Ratones , Enfermedades del Sistema Nervioso/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo
16.
Front Immunol ; 13: 832989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371018

RESUMEN

Several serine proteases have been linked to autoimmune disorders and tumour initiation although the mechanisms are not fully understood. Activation of the kynurenine pathway enzyme indoleamine-2,3-dioxygenase (IDO1) modulates cellular activity in the brain, tolerogenesis in the immune system and is a major checkpoint in cancer development. We now report that IDO1 mRNA and IDO1 protein expression (generating kynurenine) are induced in human monocyte-derived macrophages by several chymotryptic serine proteases with direct links to tumorigenesis, including Prostate Specific Antigen (PSA), CD26 (Dipeptidyl-peptidase-4, CD26/DPP-4), High Temperature Requirement protein-A (HtrA), and the bacterial virulence factor subtilisin. These proteases also induce expression of the pro-inflammatory cytokine genes IL1B and IL6. Other serine proteases tested: bacterial glu-C endopeptidase and mammalian Pro-protein Convertase Subtilase-Kexin-3 (PCSK3, furin), urokinase plasminogen activator (uPA), cathepsin G or neutrophil elastase, did not induce IDO1, indicating that the reported effects are not a general property of all serine proteases. The results represent a novel mechanism of activating immunosuppressive IDO1 and inducing kynurenine generation which, together with the production of inflammatory cytokines, would contribute to tumour initiation and progression, providing a new target for drug development. In addition, the proteasomal S20 serine protease inhibitor carfilzomib, used in the treatment of myeloma, prevented the induction of IDO1 and cytokine gene expression, potentially contributing to its clinical anti-cancer activity.


Asunto(s)
Quinurenina , Neoplasias , Animales , Citocinas , Dipeptidil Peptidasa 4/genética , Humanos , Terapia de Inmunosupresión , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Masculino , Mamíferos/metabolismo , Antígeno Prostático Específico , Serina Proteasas , Proteína Estafilocócica A , Subtilisina
17.
Front Immunol ; 13: 1001956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389710

RESUMEN

Many invasive micro-organisms produce 'quorum sensor' molecules which regulate colony expansion and may modulate host immune responses. We have examined the ability of Pseudomonas Quorum Sensor (PQS) to influence cytokine expression under conditions of inflammatory stress. The administration of PQS in vivo to mice with collagen-induced arthritis (CIA) increased the severity of disease. Blood and inflamed paws from treated mice had fewer regulatory T cells (Tregs) but normal numbers of Th17 cells. However, PQS (1µM) treatment of antigen-stimulated lymph node cells from collagen-immunised mice in vitro inhibited the differentiation of CD4+IFNγ+ cells, with less effect on CD4+IL-17+ cells and no change in CD4+FoxP3+Tregs. PQS also inhibited T cell activation by anti-CD3/anti-CD28 antibodies. PQS reduced murine macrophage polarisation and inhibited expression of IL1B and IL6 genes in murine macrophages and human THP-1 cells. In human monocyte-derived macrophages, IDO1 gene, protein and enzyme activity were all inhibited by exposure to PQS. TNF gene expression was inhibited in THP-1 cells but not murine macrophages, while LPS-induced TNF protein release was increased by high PQS concentrations. PQS is known to have iron scavenging activity and its suppression of cytokine release was abrogated by iron supplementation. Unexpectedly, PQS decreased the expression of indoleamine-2, 3-dioxygenase genes (IDO1 and IDO2), IDO1 protein expression and enzyme activity in mouse and human macrophages. This is consistent with evidence that IDO1 inhibition or deletion exacerbates arthritis, while kynurenine reduces its severity. It is suggested that the inhibition of IDO1 and cytokine expression may contribute to the quorum sensor and invasive actions of PQS.


Asunto(s)
Quinurenina , Pseudomonas , Humanos , Ratones , Animales , Quinurenina/metabolismo , Pseudomonas aeruginosa , Hierro/metabolismo , Citocinas/metabolismo
18.
Front Neurosci ; 16: 1002004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507331

RESUMEN

Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.

19.
Front Immunol ; 11: 388, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194572

RESUMEN

The importance of the kynurenine pathway in normal immune system function has led to an appreciation of its possible contribution to autoimmune disorders such as rheumatoid arthritis. Indoleamine-2,3-dioxygenase (IDO) activity exerts a protective function, limiting the severity of experimental arthritis, whereas deletion or inhibition exacerbates the symptoms. Other chronic disorder with an inflammatory component, such as atherosclerosis, are also suppressed by IDO activity. It is suggested that this overall anti-inflammatory activity is mediated by a change in the relative production or activity of Th17 and regulatory T cell populations. Kynurenines may play an anti-inflammatory role also in CNS disorders such as Huntington's disease, Alzheimer's disease and multiple sclerosis, in which signs of inflammation and neurodegeneration are involved. The possibility is discussed that in Huntington's disease kynurenines interact with other anti-inflammatory molecules such as Human Lymphocyte Antigen-G which may be relevant in other disorders. Kynurenine involvement may account for the protection afforded to animals with cerebral malaria and trypanosomiasis when they are treated with an inhibitor of kynurenine-3-monoxygenase (KMO). There is some evidence that changes in IL-10 may contribute to this protection and the relationship between kynurenines and IL-10 in arthritis and other inflammatory conditions should be explored. In addition, metabolites of kynurenine downstream of KMO, such as anthranilic acid and 3-hydroxy-anthranilic acid can influence inflammation, and the ratio of these compounds is a valuable biomarker of inflammatory status although the underlying molecular mechanisms of the changes require clarification. Hence it is essential that more effort be expended to identify their sites of action as potential targets for drug development. Finally, we discuss increasing awareness of the epigenetic regulation of IDO, for example by DNA methylation, a phenomenon which may explain differences between individuals in their susceptibility to arthritis and other inflammatory disorders.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Enfermedades del Sistema Nervioso/inmunología , Enfermedades del Sistema Nervioso/metabolismo , Animales , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Quinurenina/inmunología
20.
Osteoarthr Cartil Open ; 2(4): 100101, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33381766

RESUMEN

OBJECTIVE: Evoked responses following mechanical or thermal stimulation are typically used to assess pain behaviour in murine osteoarthritis (OA). However, there is no consensus on how best to measure spontaneous pain behaviour. METHOD: OA by partial meniscectomy (PMX), or sham surgery was performed in 10-week old C57BL/6 male mice. Collagen-induced arthritis (CIA) was induced in 10 week old DBA1 male mice. Spontaneous pain behaviour, either at the time of active inflammatory disease (CIA), or over the 12 weeks after induction of OA, was assessed by static incapacitance testing (measuring percentage of weight placed through each hindlimb), and Laboratory Animal Behaviour Observation Registration and Analysis System (LABORAS) (translating cage vibrations of singly house animals into specific activities). Data were analysed by repeated measures two way ANOVA with post hoc testing comparing experimental groups with either sham operated or naïve controls. RESULTS: By incapacitance testing, two phases of painful behaviour were evident after PMX: a transient, post-operative phase, which resolved within one week, and a late OA pain phase starting 8 weeks post surgery and reaching statistical significance at week 12 (95% CI: sham 89.51-98.19, PMX 76.18-98.16). LABORAS, was able to detect pain behaviour in mice with CIA, but no statistically significant pain behaviour was observed in OA mice either post operatively (once analgesia had been controlled for) or at any later time points for any activity compared with the sham group. CONCLUSION: Static incapacitance testing is superior to LABORAS for measuring spontaneous pain behaviour in surgically induced murine OA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA