Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Inorg Chem ; 63(13): 5945-5951, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38502918

RESUMEN

Alkali-metal rare-earth carbonates (ARECs) find great potential in nonlinear optical applications. As the most common method, the hydrothermal reaction is widely used in synthesizing ARECs. The black-box nature of the hydrothermal reaction makes it difficult for understanding the formation processes and therefore may slow down the pace of structural discovery. Here, by simply soaking the rare-earth carbonates in Na2CO3 solutions, we successfully obtain a series of noncentrosymmetric Na3RE(CO3)3·6H2O (RE = Tb 1, Sm 2, Eu 3, Gd 4, Dy 5, Ho 6, and Er 7) compounds without using the high-temperature hydrothermal method. The transformation process, investigated by powder X-ray diffraction and scanning electron microscopy, is governed by the concentration of the soaking solutions. Na3Tb(CO3)3·6H2O, as an example, is studied structurally, and its physical properties are characterized. It exhibits a second harmonic generation effect of 0.5 × KDP and a short UV cutoff edge of 222 nm (5.8 eV). Our study provides insights for exploring new AREC structures, which may further advance the development of carbonate nonlinear optical crystals.

2.
Molecules ; 28(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37049644

RESUMEN

Acquiring adsorbents capable of effective radioiodine capture is important for nuclear waste treatment; however, it remains a challenge to develop porous materials with high and reversible iodine capture. Herein, we report a porous self-assembly constructed by a cup-shaped PdII complex through intermolecular π···π interactions. This self-assembly features a cubic structure with channels along all three Cartesian coordinates, which enables it to efficiently capture iodine with an adsorption capacity of 0.60 g g-1 for dissolved iodine and 1.81 g g-1 for iodine vapor. Furthermore, the iodine adsorbed within the channels can be readily released upon immersing the bound solid in CH2Cl2, which allows the recycling of the adsorbent. This work develops a new porous molecular material promising for practical iodine adsorption.

3.
Molecules ; 28(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37446584

RESUMEN

Single-crystal-to-single-crystal metalation of organic ligands represents a novel method to prepare metal-organic complexes, but remains challenging. Herein, a hierarchical self-assembly {(H12L8)·([N(C2H5)4]+)3·(ClO4-)15·(H2O)32} (1) (L = tris(2-benzimidazolylmethyl) amine) consisting of π-stacked cubes which are assembled from eight partially protonated L ligands is obtained. By soaking the crystals of compound 1 in the aqueous solution of Co(SCN)2, the ligands coordinate with Co2+ ions stoichiometrically and ClO4- exchange with SCN- via single-crystal-to-single-crystal transformation, leading to {([CoSCNL]+)8·([NC8H20]+)3·(SCN)11·(H2O)13} (2).


Asunto(s)
Complejos de Coordinación , Modelos Moleculares , Ligandos , Complejos de Coordinación/química , Agua , Iones
4.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570674

RESUMEN

Ester hydrates, as the intermediates of the esterification between acid and alcohol, are very short-lived and challenging to be trapped. Therefore, the crystal structures of ester hydrates have rarely been characterized. Herein, we present that the mono-deprotonated ester hydrates [CH3OSO2(OH)2]-, serving as the template for the self-assembly of a π-stacked boat-shaped macrocycle (CH3OSO2(OH)2)0.67(CH3OSO3)1.33@{[ClLCoII]6}·Cl4·13CH3OH·9H2O (1) (L = tris(2-benzimidazolylmethyl) amine), can be trapped in the host by multiple NH···O hydrogen bonds. In the solution of CoCl2, L, and H2SO4 in MeOH, HSO4- reacts with MeOH, producing [CH3OSO3]- via the ester hydrate intermediate of [CH3OSO3(OH)2]-. Both the product and the intermediate serve as the template directing the self-assembly of the π-stacked macrocycle, in which the short-lived ester hydrate is firmly trapped and stabilized, as revealed by single-crystal analysis.

5.
Angew Chem Int Ed Engl ; 61(48): e202210012, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36219474

RESUMEN

Porous supramolecular assemblies constructed by noncovalent interactions are promising for adsorptive purification of methane because of their easy regeneration. However, the poor stability arising from the weak noncovalent interactions has obstructed their practical applications. Here, we report a robust and easily regenerated polyhedron-based cationic framework assembled from a metal-organic square. This material exhibits a very low affinity for CH4 and N2 , but captures other competing gases (e.g. C2 H6 , C3 H8 , and CO2 ) with a moderate affinity. These results underpin highly selective separation of a range of gas mixtures that are relevant to natural gas and industrial off-gas. Dynamic breakthrough studies demonstrate its practical separation for C2 H6 /CH4 , C3 H8 /CH4 , CO2 /N2 , and CO2 /CH4 . Particularly, the separation time is ≈11 min g-1 for the C2 H6 /CH4 (15/85 v/v) mixture and ≈49 min g-1 for the C3 H8 /CH4 (15/85 v/v) mixture (under a flow of 2.0 mL min-1 ), respectively, enabling its capability for CH4 purification from light alkanes.


Asunto(s)
Dióxido de Carbono , Metano , Adsorción , Porosidad , Metales , Gases
6.
J Am Chem Soc ; 143(29): 10920-10929, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34270238

RESUMEN

Constructing supramolecular cages with multiple subunits via weak intermolecular interactions is a long-standing challenge in chemistry. So far, π-stacked supramolecular cages still remain unexplored. Here, we report a series of π-stacked cage based hierarchical self-assemblies. The π-stacked cage (π-MX-cage) is assembled from 16 [MXL]+ ions (M = Mn2+, Co2+; X = Br-, SCN-, Cl-; and L = tris(2-benzimidazolylmethyl)amine) via 18 intermolecular π-stacking interactions. The tetrahedral cage, consisting of four [MXL]+ ions as the vertexes and six pairs of [MXL]+ ions as the edges, features 48 exterior N-H hydrogen bond donors for hydrogen bond formation with guest molecules. By variation of the M2+/X- pair, the π-MX-cage demonstrates unique versatility for incorporating a wide variety of species via different hydrogen-bonding modes during the assembly of hierarchical superstructures. In specific, the π-MnBr-cages encapsulate acetonitrile (CH3CN) or cis-1,3,5-cyclohexanetricarbonitrile (cis-HTN) molecules in the central voids, while a core-shell tetrahedral inorganic cluster [Mn(H2O)6]@([Mn(H2O)4]4[Br42-]6) (Mn@Mn4-cage) is captured within the interstitial regions between cages. The π-CoSCN-cages are capable of stabilizing reactive sulfur-containing species, such as S2O42-, S2O62-, and HSO3- ions, in the hierarchical superstructure. Finally, H2PO4- ions are incorporated between π-CoCl-cages, resulting in an inorganic mesoporous framework. These results provide insights into further exploring the chemistry and hierarchical assembly of supramolecular cages based on π-π stacking intermolecular interactions.

7.
Angew Chem Int Ed Engl ; 56(3): 717-721, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-27936289

RESUMEN

Atypically anisotropic and large changes in magnetic susceptibility, along with a change in crystalline shape, were observed in a CoII complex at near room temperature. This was achieved by combining oxalate molecules, acting as rotor, and a CoII ion with unquenched orbital angular momentum. A thermally controlled 90° rotation of the oxalate counter anion triggered a symmetry-breaking ferroelastic phase transition, accompanied by contraction-expansion behavior (ca. 4.5 %) along the long axis of a rod-like single crystal. The molecular rotation induced a minute variation in the coordination geometry around the CoII ion, resulting in an abrupt decrease and a remarkable increase in magnetic susceptibility along the direction perpendicular and parallel to the long axis of the crystal, respectively. Theoretical calculations suggested that such an unusual anisotropic change in magnetic susceptibility was due to a substantial reorientation of magnetic anisotropy induced by slight disruption in the ideal D3 coordination environment of the complex cation.

8.
Chemistry ; 22(48): 17130-17135, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27629522

RESUMEN

Two polymorphic structures have been well determined in a valence tautomeric (VT) dinuclear cobalt complex. These polymorphs showed distinct thermal- and photomagnetic behavior, and are thus ideal for studying the "pure" intermolecular factors to VT transitions. In polymorph 1A, the VT cations are arranged head-to-waist with their neighbors and exhibit weak π⋅⋅⋅π interactions, resulting in a gradual and incomplete thermal VT transition. In contrast, the cations in polymorph 1B are arranged head-to-tail and exhibit relatively strong π⋅⋅⋅π interactions, leading to an abrupt and complete thermal VT transition with adjustable hysteresis loop at around room temperature. The VT process for both polymorphs can be induced by light, but the light-excited state of 1B⋅2H2 O has a higher thermal relaxation temperature than that of 1A⋅3H2 O.

9.
Angew Chem Int Ed Engl ; 55(47): 14628-14632, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27736025

RESUMEN

Proton transport via dynamic molecules is ubiquitous in chemistry and biology. However, its use as a switching mechanism for properties in functional molecular assemblies is far less common. In this study, we demonstrate how an intra-carboxyl proton shuttle can be generated in a molecular assembly akin to a rack-and-pinion cascade via a thermally induced single-crystal-to-single-crystal phase transition. In a triply interpenetrated supramolecular organic framework (SOF), a 4,4'-azopyridine (azpy) molecule connects to two biphenyl-3,3',5,5'-tetracarboxylic acid (H4 BPTC) molecules to form a functional molecular system with switchable mechanical properties. A temperature change reversibly triggers a molecular movement akin to a rack-and-pinion cascade, which mainly involves 1) an intra-carboxyl proton shuttle coupled with tilting of the azo molecules and azo pedal motion and 2) H4 BPTC translation. Moreover, both the molecular motions are collective, and being propagated across the entire framework, leading to a macroscopic crystal expansion and contraction.

10.
Langmuir ; 30(47): 14300-7, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25325734

RESUMEN

The performance of metal-organic frameworks (MOFs) in humid or aqueous environments is a topic of great significance for a variety of applications ranging from adsorption separations to gas storage. While a number of water-stable MOFs have emerged recently in the literature, the majority of MOFs are known to have poor water stability compared to zeolites and activated carbons, and there is therefore a critical need to perform systematic water-stability studies and characterize MOFs comprehensively after water exposure. Using these studies we can isolate the specific factors governing the structural stability of MOFs and direct the future synthesis efforts toward the construction of new, water-stable MOFs. In this work, we have extended our previous work on the systematic water-stability studies of MOFs and synthesized new, cobalt-, nickel-, copper-, and zinc-based, water-stable, pillared MOFs by incorporating structural factors such as ligand sterics and catenation into the framework. Stability is assessed by using water vapor adsorption isotherms along with powder X-ray diffraction patterns and results from BET modeling of N2 adsorption isotherms before and after water exposure. As expected, our study demonstrates that unlike the parent DMOF structures (based on Co, Ni, Cu, and Zn metals), which all collapse under 60% relative humidity (RH), their corresponding tetramethyl-functionalized variations (DMOF-TM) are remarkably stable, even when adsorbing more than 20 mmol of H2O/g of MOF at 80% RH. This behavior is due to steric factors provided by the methyl groups grafted on the BDC (benzenedicarboxylic acid) ligand, as shown previously for the Zn-based DMOF-TM. Moreover, 4,4',4″,4‴-benzene-1,2,4,5-tetrayltetrabenzoic acid based, pillared MOFs (based on Co and Zn metals) are also found to be stable after 90% RH exposure, even when the basicity of the bipyridyl-based pillar ligand is low. This is due to the presence of catenation in their frameworks, similar to MOF-508 (Zn-BDC-BPY), which has also been reported to be stable after exposure to 90% RH.

11.
Adv Sci (Weinh) ; 11(14): e2308028, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308108

RESUMEN

Design of flexible porous materials where the diffusion of guest molecules is regulated by the dynamics of contracted pore aperture is challenging. Here, a flexible porous self-assembly consisting of 1D channels with dynamic bottleneck gates is reported. The dynamic pendant naphthimidazolylmethyl moieties at the channel necks provide kinetic gate function, that enables unusual adsorption for light hydrocarbons. The adsorption for CO2 is mainly dominated by thermodynamics with the uptakes decreasing with increasing temperature, whereas the adsorptions for larger hydrocarbons are controlled by both thermodynamics and kinetics resulting in an uptake maximum at a temperature threshold. Such an unusual adsorption enables temperature-dependent separation of CO2 from the corresponding hydrocarbons.

12.
Langmuir ; 29(2): 633-42, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23214448

RESUMEN

The rational design of metal-organic frameworks (MOFs) with structural stability in the presence of humid conditions is critical to the commercialization of this class of materials. However, the systematic water stability studies required to develop design criteria for the construction of water-stable MOFs are still scarce. In this work, we show that by varying the functional groups on the 1,4-benzenedicarboxylic acid (BDC) linker of DMOF [Zn(BDC)(DABCO)(0.5)], we can systematically tune the kinetic water stability of this isostructural, pillared family of MOFs. To illustrate this concept, we have performed water adsorption studies on four novel, methyl-functionalized DMOF variations along with a number of already reported functionalized analogues containing polar (fluorine) and nonpolar (methyl) functional groups on the BDC ligand. These results are distinctly different from previous reports where the apparent water stability is improved through the inclusion of functional groups such as -CH(3), -C(2)H(5), and -CF(3) which only serve to prevent significant amounts of water from adsorbing into the pores. In this study, we present the first demonstration of tuning the inherent kinetic stability of MOF structures in the presence of large amounts of adsorbed water. Notably, we demonstrate that while the parent DMOF structure is unstable, the DMOF variation containing the tetramethyl BDC ligand remains fully stable after adsorbing large amounts of water vapor during cyclic water adsorption cycles. These trends cannot be rationalized in terms of hydrophobicity alone; experimental water isotherms show that MOFs containing the same number of methyl groups per unit cell will have different kinetic stabilities and that the precise placements of the methyl groups on the BDC ligand are therefore critically important in determining their stability in the presence of water. We present the water adsorption isotherms, PXRD (powder X-ray diffraction) patterns, and BET surface areas before and after water exposure to illustrate these trends. Furthermore, we shed light on the important distinction between kinetic and thermodynamic stability in MOFs. Molecular simulations are also used to provide insight into the structural characteristics governing these trends in kinetic water stability.

13.
Langmuir ; 28(49): 16874-80, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23134370

RESUMEN

The practical use of metal-organic frameworks (MOFs) in applications ranging from adsorption separations to controlled storage and release hinges on their stability in humid or aqueous environments. The sensitivity of certain MOFs under humid conditions is well-known, but systematic studies of water adsorption properties of MOFs are lacking. This information is critical for developing design criteria for directing future synthesis efforts. The goal of this work is to understand the influence of the extent of Zn-O bond shielding on the relative stabilities of MOFs belonging to same family of isostructural, noncatenated pillared MOFs [Zn(L)(DABCO)(0.5)], where L is the functionalized BDC (1,4-benzenedicarboxylic acid) linker. The different extent of Zn-O bond shielding is provided by incorporating a broad range of functional groups on the BDC ligand. The resulting MOFs have varying surface areas, pore sizes, and pore volumes. Stability is assessed through water vapor adsorption isotherms combined with powder X-ray diffraction (PXRD) experiments and surface area analyses. Our study demonstrates that integration of polar functional groups (e.g., nitro, bromo, chloro, hydroxy, etc.) on the dicarboxylate linker renders these MOFs water unstable compared to the parent MOF as these polar functional groups have a negative shielding effect; i.e., they facilitate hydrolysis of the Zn-O bond. On the other hand, placing nonpolar groups (e.g., methyl) on the BDC ligand results in structurally robust MOFs because the Zn-O bond is effectively shielded from attack by water molecules. Therefore, the anthracene- and tetramethyl-BDC MOFs do not lose crystallinity or surface area after water exposure, in spite of the large amount of water adsorption due to capillary condensation at ∼20% relative humidity (RH). This has been observed rarely in the MOF literature. The results of this work show that by ligand functionalization it is possible to adjust the water stability of a pillared MOF in both the positive and negative directions and, thus, provide an important step toward understanding the water adsorption behavior of MOFs.

14.
ACS Omega ; 7(23): 19743-19753, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35721969

RESUMEN

Sevelamer hydrochloride (SH), originally developed as an oral pharmaceutical for controlling blood phosphate levels, is a polyallylamine resin that could be used in water treatments. Although it binds phosphates effectively, its adsorption capacity suffers from a significant loss at high pH. Here, we modify SH with lanthanum oxalate to improve its phosphate adsorption in alkaline environments. With less than 6.00 wt% in La content, the composite adsorbent (SH-1C-1La) exhibits an adsorption capacity of 109.3 mg P g-1 at pH 8.0 and 100.2 mg P g-1 at pH 10.0, demonstrating significant enhancement from the original SH (86.3 mg P g-1 at pH 8.0 and 69.4 mg P g-1 at pH 10.0). Besides its high adsorption capacity and rapid adsorption kinetics, SH-1C-1La is capable of maintaining more than 78% of its capacity after four regeneration cycles, showing good durability in long-term applications. Zeta-potential measurements and XPS analysis reveal that the lanthanum oxalate species increase the surface potential to enhance the electrostatic adsorption while introducing chemical binding sites for phosphate ions. Both factors lead to the improved adsorption properties. The modification by lanthanum oxalate species might provide a new alternative for improving the phosphate adsorption properties of anion-exchange resins.

15.
RSC Adv ; 12(45): 29151-29161, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36320769

RESUMEN

Luminescence stability is a critical consideration for applying phosphors in practical devices. In this work, we report two categories of double p-tert-butylthiacalix[4]arene (H4TC4A) capped clusters that exhibit characteristic lanthanide luminescence. Specifically, {[Ln4(µ4-OH)(TC4A)2(DMF)6(CH3OH)3(HCOO)Cl2]}·xCH3OH (Ln = Eu (1), Tb (2); x = 0-1) with square-planar [Ln4(µ4-OH)] cluster cores and {[Ln9(µ5-OH)2(µ3-OH)8(OCH3) (TC4A)2 (H2O)24Cl9]}·xDMF (Ln = Gd (3), Tb (4), Dy (5); x = 2-6) with hourglass-like [Ln9(µ5-OH)2(µ3-OH)8] cluster cores are synthesized and characterized. By comparing 2 and 4, we find that several critical luminescence properties (such as quantum efficiency and luminescence stabilities) depend directly on the cluster core structure. With the square-planar [Ln4(µ4-OH)] cluster cores, 2 demonstrates high quantum yield (∼65%) and excellent luminescence stability against moisture, high temperature, and UV-radiation. A white light-emitting diode (LED) with ultrahigh color quality is successfully fabricated by mixing 2 with commercial phosphors. These results imply that high quality phosphors might be achieved by exploiting the double thiacalix[4]arene-capping strategy, with an emphasis on the cluster core structure.

16.
ACS Appl Mater Interfaces ; 14(33): 37894-37903, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35965482

RESUMEN

Luminescent stability is a vital factor that dictates the application of lanthanide luminescent materials. Designing luminescent lanthanide cluster nodes that form an extended framework with predictable linking patterns may help enhance the structural stability of the lanthanide complexes and hence lead to improved luminescent stability. Herein, we report a series of one-dimensional (1D) rare-earth metal-organic framework compounds, {Ln4(µ4-OH)(TC4A)2(H2O)2(CH3O)(HCOO)2(HCOOH)}·xCH3OH (Ln = Sm (1), Eu (2), Tb (3), Dy (4); x = 1-5), based on double thiacalix[4]arene-capped Ln4(µ4-OH)(TC4A)2 nodes. The axially capped Ln4(µ4-OH)(TC4A)2 nodes are connected equatorially by formate bridges to form zigzag 1D-metal-organic framework (MOF) chains, which further assemble into a quasi-two-dimensional (2D) structure via hydrogen bonding. These unique features result in a stable structure and therefore superior luminescent stability. For example, the Tb-based 1D-MOF (3) exhibits intensive green photoluminescence with a quantum yield of 53% and an average decay time of 1.33 × 106 ns. It maintains its integrated emission intensity at 96.5, 94.5, and 89.4% of the original value after being exposed to moisture (soaking in water for 10 days), elevated temperature (150 °C), and UV (15 days of continuous radiation), respectively, demonstrating excellent luminescent stability. We adopt the Tb-based 1D-MOF (3) as the green phosphor and successfully fabricate a prototype white-light-emitting diode (LED) with stable emission under long-term operation. Our synthetic strategy allows control over the linking pattern of lanthanide nodes, providing a predictive route to obtain lanthanide MOFs with improved luminescent stability.

17.
ACS Omega ; 7(36): 31767-31777, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36120046

RESUMEN

Excessive phosphorus (P) in water is the main reason for eutrophication, which has been a global problem for many years. For the adsorption treatment of phosphorus-containing wastewater, adsorbents are key research topics. In this study, we develop the synthesis of a series of Ce/Fe adsorbents by modifying the commercial cerium carbonate with Fe2(SO4)3. By conducting comprehensive analysis with XRD, FTIR, and SEM, we find that the amorphous granular structure and large chunky structure created by the high and low Fe content, respectively, both had a negative effect on the adsorption capacity of phosphate. Among different adsorbents, Ce/Fe-15/3, with Ce loading of 28.33 wt % and Fe loading of 5.66 wt %, exhibits high P adsorption capacity of 58 mg P/g (in pH = 7, 30 mg P/L solution). It also demonstrates excellent selectivity toward phosphate adsorption in Cl-, SO4 2-, and NO3 - solution (up to 20 times of the phosphate molarity) and good adsorption stability in acidic environments (pH = 3-6). The adsorption behavior of Ce/Fe-15/3 can be modeled well by the Langmuir model and pseudo-second-order (PSO) model. By conducting the XPS analysis, we conclude that the adsorption mechanism is a combination effect of Ce/PO4 3- and Fe/PO4 3- chemical interactions.

18.
Front Chem ; 8: 506, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32626690

RESUMEN

Crystalline materials generally show small positive thermal expansion along all three crystallographic axes because of increasing anharmonic vibrational amplitudes between bonded atoms or ions pairs on heating. In very rare cases, structural peculiarities may give rise to negative, anomalously large or zero thermal expansion behaviors, which remain poorly understood. Host-guest composites may exhibit such anomalous behavior if guest motions controllable. Here we report an anionic framework of helical nanotubes comprising three parallel helical chains. The anisotropic interaction between the guest and the framework, results in anisotropic thermal expansion in this framework. A series of detailed structural determination at 50 K intervals enable process visualization at the molecular level and the observed guest-dependent phases of the framework strongly support our proposed mechanism.

19.
Chemistry ; 14(33): 10340-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18821536

RESUMEN

Four types of cobalt-lanthanide heterometallic compounds based on metalloligand Co(2,5-pydc)(3) (3-) (2,5-H(2)pydc=pyridine-2,5-dicarboxylate acid), [Ln(2)Co(2)(2,5-pydc)(6)(H(2)O)(4)](n) 2n H(2)O (1) (Ln=Tb, Dy for 1 a, 1 b respectively), [Tb(2)Co(2)(2,5-pydc)(6)(H(2)O)(4)](n)3n H(2)O (2), [Tb(2)Co(2)(2,5-pydc)(6)(H(2)O)(9)](n)4n H(2)O (3), and [LaCo(2,5-pydc)(3)(H(2)O)(2)](n)2n H(2)O (4) have been synthesized. Compound 1 has a layer structure with well-isolated carboxylate-bridged Ln(3+) chains, compound 2 is a three-dimensional (3D) porous network with Tb(3+) chains that are also well isolated and carboxylate bridged, 3 is a layer structure based on dinuclear units, and 4 is a 3D network with boron nitride (BN) topology. DC magnetic studies reveal ferromagnetic coupling in all the carboxylate-bridged Ln(3+) chains in 1 a, 1 b, and 2. Compared to the silence of the out-of-phase ac susceptibility of 2, above 1.9 K the magnetic relaxation behavior of both 1 a and 1 b is slow like that of a single-chain magnet.

20.
Adv Mater ; 29(42)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28960582

RESUMEN

Network structures based on Star-of-David catenanes with multiple superior functionalities have been so far elusive, although numerous topologically interesting networks are synthesized. Here, a metal-organic framework featuring fused Star-of-David catenanes is reported. Two triangular metallacycles with opposite handedness are triply intertwined forming a Star-of-David catenane. Each catenane fuses with its six neighbors to generate a porous twofold intercatenated gyroid framework. The compound possesses exceptional stability and exhibits multiple functionalities including highly selective CO2 capture, high proton conductivity, and coexistence of slow magnetic relaxation and long-range ordering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA