Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hum Brain Mapp ; 45(8): e26712, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38798104

RESUMEN

The aim of this study was to systematically investigate structural and functional alterations in amygdala subregions using multimodal magnetic resonance imaging (MRI) in patients with tinnitus with or without affective dysfunction. Sixty patients with persistent tinnitus and 40 healthy controls (HCs) were recruited. Based on a questionnaire assessment, 26 and 34 patients were categorized into the tinnitus patients with affective dysfunction (TPAD) and tinnitus patients without affective dysfunction (TPWAD) groups, respectively. MRI-based measurements of gray matter volume, fractional anisotropy (FA), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC) were conducted within 14 amygdala subregions for intergroup comparisons. Associations between the MRI properties and clinical characteristics were estimated via partial correlation analyses. Compared with that of the HCs, the TPAD and TPWAD groups exhibited significant structural and functional changes, including white matter integrity (WMI), fALFF, ReHo, DC, and FC alterations, with more pronounced WMI changes in the TPAD group, predominantly within the left auxiliary basal or basomedial nucleus (AB/BM), right central nucleus, right lateral nuclei (dorsal portion), and left lateral nuclei (ventral portion containing basolateral portions). Moreover, the TPAD group exhibited decreased FC between the left AB/BM and left middle occipital gyrus and right superior frontal gyrus (SFG), left basal nucleus and right SFG, and right lateral nuclei (intermediate portion) and right SFG. In combination, these amygdalar alterations exhibited a sensitivity of 65.4% and specificity of 96.9% in predicting affective dysfunction in patients with tinnitus. Although similar structural and functional amygdala remodeling were observed in the TPAD and TPWAD groups, the changes were more pronounced in the TPAD group. These changes mainly involved alterations in functionality and white matter microstructure in various amygdala subregions; in combination, these changes could serve as an imaging-based predictor of emotional disorders in patients with tinnitus.


Asunto(s)
Amígdala del Cerebelo , Imagen por Resonancia Magnética , Acúfeno , Humanos , Acúfeno/diagnóstico por imagen , Acúfeno/fisiopatología , Acúfeno/patología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/patología , Amígdala del Cerebelo/fisiopatología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Trastornos del Humor/diagnóstico por imagen , Trastornos del Humor/etiología , Trastornos del Humor/fisiopatología , Trastornos del Humor/patología
2.
Med Sci Monit ; 30: e942855, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755961

RESUMEN

BACKGROUND Nurses in the Intensive Care Unit (ICU) play a critical role in recognizing patients who are at risk of deterioration by conducting continual assessments and taking suitable measures in response to changing health status. The validity of the cluster nursing intervention has been studied previously, but its use among ICU patients with tracheal intubation and extubation has not been examined. This study assessed the effectiveness of cluster nursing intervention in ICU patients with tracheal intubation and extubation. MATERIAL AND METHODS In this retrospective study, 80 patients on mechanical ventilation in the ICU ward were randomly assigned to control and intervention groups (40 patients each). The control group received the routine nursing mode, while the intervention group was given 5 sessions of cluster nursing intervention. Tracheal intubation and extubation-associated complications, blood gas analysis, patient nursing satisfaction, and changes in patients' negative emotions were compared before and after the intervention. RESULTS After the nursing intervention, the levels of PaO2 were higher, while PaCO2 levels were lower in the intervention group compared to the control group (P<0.05). Importantly, anxiety and depression scores in the intervention group were lower than in the control group (P<0.05). Moreover, the overall incidence of complications in the intervention group was lower than in the control group, whereas patient satisfaction with nursing services was higher (P<0.05). CONCLUSIONS Cluster nursing intervention can effectively reduce the incidence of complications and improve patients’ physiological and psychological conditions. Moreover, it enhances patient satisfaction with nursing services, thus improving patients' clinical symptoms.


Asunto(s)
Extubación Traqueal , Unidades de Cuidados Intensivos , Intubación Intratraqueal , Humanos , Masculino , Femenino , Intubación Intratraqueal/efectos adversos , Intubación Intratraqueal/métodos , Persona de Mediana Edad , Extubación Traqueal/métodos , Estudios Retrospectivos , Anciano , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Ansiedad , Adulto , Satisfacción del Paciente , Depresión , Bienestar Psicológico
3.
J Neuroinflammation ; 20(1): 70, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906528

RESUMEN

BACKGROUND: Neutrophil serine proteinases (NSPs), released by activated neutrophils, are key proteins involved in the pathophysiologic processes of stroke. NSPs are also implicated in the process and response of thrombolysis. This study aimed to analyze three NSPs (neutrophil elastase, cathepsin G, and proteinase 3) in relation to acute ischemic stroke (AIS) outcomes and in relation to the outcomes of patients treated with intravenous recombinant tissue plasminogen activator (IV-rtPA). METHODS: Among 736 patients prospectively recruited at the stroke center from 2018 to 2019, 342 patients diagnosed with confirmed AIS were included. Plasma neutrophil elastase (NE), cathepsin G (CTSG), and proteinase 3 (PR3) concentrations were measured on admission. The primary endpoint was unfavorable outcome defined as modified Rankin Scale score 3-6 at 3 months, and the secondary endpoints were symptomatic intracerebral hemorrhage (sICH) within 48 h, and mortality within 3 months. In the subgroup of patients who received IV-rtPA, post-thrombolysis early neurological improvement (ENI) (defined as National Institutes of Health Stroke Scale score = 0 or decrease of ≥ 4 within 24 h after thrombolysis) was also included as the secondary endpoint. Univariate and multivariate logistic regression analyses were performed to evaluate the association between NSPs levels and AIS outcomes. RESULTS: Higher NE and PR3 plasma levels were associated with the 3-month mortality and 3-month unfavorable outcome. Higher NE plasma levels were also associated with the risk of sICH after AIS. After adjusting for potential confounders, plasma NE level > 229.56 ng/mL (odds ratio [OR] = 4.478 [2.344-8.554]) and PR3 > 388.77 ng/mL (OR = 2.805 [1.504-5.231]) independently predicted the 3-month unfavorable outcome. Regarding rtPA treatment, patients with NE plasma concentration > 177.22 ng/mL (OR = 8.931 [2.330-34.238]) or PR3 > 388.77 ng/mL (OR = 4.275 [1.045-17.491]) were over 4 times more likely to suffer unfavorable outcomes after rtPA treatment. The addition of NE and PR3 to clinical predictors of unfavorable functional outcome after AIS and the outcome after rtPA treatment improved discrimination as well as reclassification (integrated discrimination improvement = 8.2% and 18.1%, continuous net reclassification improvement = 100.0% and 91.8%, respectively). CONCLUSIONS: Plasma NE and PR3 are novel and independent predictors of 3-month functional outcomes after AIS. Plasma NE and PR3 also possess predictive value to identify patients with unfavorable outcomes after rtPA treatment. NE is probably an important mediator of the effects of neutrophils on stroke outcomes, which worth further investigation.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Activador de Tejido Plasminógeno/efectos adversos , Fibrinolíticos/uso terapéutico , Neutrófilos , Elastasa de Leucocito , Catepsina G , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Terapia Trombolítica , Estudios Prospectivos , Mieloblastina , Isquemia Encefálica/tratamiento farmacológico , Resultado del Tratamiento , Accidente Cerebrovascular/tratamiento farmacológico , Hemorragia Cerebral/tratamiento farmacológico , Estudios Retrospectivos
4.
J Stroke Cerebrovasc Dis ; 32(11): 107347, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716103

RESUMEN

OBJECTIVES: This study was designed to investigate metabolic biomarker changes and related metabolic pathways of Butylphthalide (NBP) on cerebral ischemia/reperfusion. METHODS: In this study, a mouse cerebral ischemia/reperfusion (I/R) model was prepared using the middle cerebral artery occlusion method, and neurobehavioral score and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining experiments were used to confirm the obvious NBP anti-cerebral ischemia effect. The protective effect of NBP in the mouse cerebral I/R model and its metabolic pathway and mechanism were investigated using mouse blood samples. RESULTS: The metabolic profiles of mice in the I/R+NBP, I/R, and sham groups were significantly different. Under the condition that I/R vs. sham was downregulated and I/R + NBP vs. I/R was upregulated, 88 differential metabolites, including estradiol, ubiquinone-2, 2-oxoarginine, and L-histidine trimethylbetaine, were screened and identified. The related metabolic pathways involved arginine and proline metabolism, oxidative phosphorylation, ubiquitin and other terpenoid-quinone biosynthesis, and estrogen signaling. CONCLUSIONS: Metabolomics was used to elucidate the NBP mechanism in cerebral ischemia treatment in mice, revealing synergistic NBP pharmacological characteristics with multiple targets.

5.
Neurochem Res ; 47(5): 1419-1428, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35129772

RESUMEN

Zinc is highly enriched in the central nervous system. Numerous evidences suggest that high concentration of zinc acts as a critical mediator of neuronal death in the ischemic brain, however, the possible mechanisms of neurotoxicity of zinc during cerebral ischemia/reperfusion (I/R) remain elusive. Endoplasmic reticulum (ER) is a storage location of intracellular zinc. ER stress related genes were up-regulated during zinc-induced neuronal death in vascular-type senile dementia. In the present study, we investigated whether intracellular accumulated zinc aggravates I/R injury through ER stress and ER stress-associated apoptosis. Male Sprague-Dawley rats were subjected to 90 min middle cerebral artery occlusion (MCAO) and received either vehicle or zinc chelator TPEN 15 mg/kg. The expression of ER stress related factors glucose-regulated protein 78 (GRP78) and phosphorylated eukaryotic initiation factor 2α (p-eIF2α), ER stress related apoptotic proteins CCAAT-enhancer-binding protein homologous protein (CHOP) and caspase-12, as well as anti-apoptotic factor B-cell lymphoma-2 (Bcl-2) were assessed 24 h after reperfusion. Our results showed that the levels of GRP78 and p-eIF2α, as well as CHOP and caspase-12, were increased in ischemic brain, indicating that cerebral I/R triggers ER stress. Furthermore, GRP78, CHOP and caspase-12 were all colocalized with the zinc-specific dyes NG, suggesting that there is certain relationship between cytosolic labile zinc and ER stress following cerebral ischemia. Chelating zinc with TPEN reversed the expression of GRP78, p-eIF2α in ischemic rats. Moreover, CHOP and NeuN double staining positive cells, as well as caspase-12 and TUNEL double staining positive cells were also decreased after TPEN treatment, indicating that chelating zinc might inhibit ER stress and decreased ER stress associated neuronal apoptosis. In addition, TPEN treatment reversed the downregulated level of Bcl-2, which localized in the ER membrane and involved in the dysfunction of ER, confirming that the anti-apoptosis effects of chelating zinc following I/R are exerted via inhibition of the ER stress. Taken together, this study demonstrated that excessive zinc activates ER stress and zinc induced neuronal cell death is at least partially due to ER stress specific neuronal apoptosis in ischemic penumbra, which may provide an important mechanism of cerebral I/R injury.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Apoptosis , Isquemia Encefálica/metabolismo , Estrés del Retículo Endoplásmico , Masculino , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Zinc
6.
Neural Plast ; 2021: 6718184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497641

RESUMEN

Several clinical parameters and biomarkers have been proposed as prognostic markers for stroke. However, it has not been clarified whether the risk factors affecting the prognosis of patients with recurrent and first-ever stroke are similar. In this study, we aimed to explore the relationship between soluble lectin-like oxidized low-density lipoprotein receptor 1 (sLOX-1) levels and the prediction of the functional outcome in patients with recurrent and first-ever stroke. A total of 266 patients with recurrent and first-ever stroke, who underwent follow-up for 3 months, were included in this study. Plasma samples were collected within 24 h after onset. The results showed that biomarkers for the prognosis of patients with recurrent stroke were different from that of those with first-ever stroke. sLOX-1 levels were correlated with modified Rankin Scale scores of patients with recurrent stroke alone (r = 0.3232, p = 0.001). sLOX-1 levels were also associated with an increased risk of unfavorable outcomes in patients with recurrent stroke with an adjusted odds ratio of 1.489 (95% confidence interval, 1.204-1.842, p < 0.0001). Combining the risk factors showed greater accuracy for prognosis, yielding a sensitivity of 93.2% and a specificity of 75%, with an area under the curve of 0.916, evaluated by the receiver operating characteristic curve. These findings suggest that the diagnosis and prognosis are different between patients with recurrent stroke and those with first-ever stroke, and sLOX-1 level is an independent prognostic marker in patients with recurrent stroke.


Asunto(s)
Isquemia Encefálica/sangre , Isquemia Encefálica/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Receptores Depuradores de Clase E/sangre , Anciano , Biomarcadores/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Recurrencia , Factores de Riesgo , Solubilidad
7.
J Neuroinflammation ; 17(1): 237, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795376

RESUMEN

BACKGROUND: An imbalance between circulating neuroprotective and neurotoxic T cell subsets leads to poor prognosis in acute ischaemic stroke (AIS). Preclinical studies have indicated that the soluble form of the interleukin-2 receptor α (sIL-2Rα)-IL-2 complex regulates T cell differentiation. However, the association between sIL-2Rα levels and AIS remains unclear. METHODS: A total of 201 first-ever AIS patients within 24 h after stroke onset and 76 control subjects were recruited. The National Institutes of Health Stroke Scale (NIHSS) score and 3-month functional outcome (modified Rankin Scale [mRS] score) at admission were assessed. Plasma sIL-2Rα and IL-2 levels at admission were measured. Prognostic significance was identified by using univariate and multivariate logistic regression analyses. RESULTS: Patients with poor functional outcomes at 3 months had significantly higher levels of sIL-2Rα and lower levels of IL-2 than patients with good outcomes. Moreover, sIL-2Rα levels showed a strong positive correlation with NIHSS and mRS scores (p < 0.0001), whereas IL-2 levels were negatively correlated with mRS scores (p < 0.01). Univariate analyses showed that higher sIL-2Rα and IL-2 levels were associated with an increased and reduced risk of unfavourable outcomes, respectively. After adjusting for confounding variables, the sIL-2Rα level remained independently associated with an increased risk of an unfavourable outcome, and adding sIL-2Rα levels to the conventional risk factor model significantly improved risk reclassification (net reclassification improvement 17.56%, p = 0.003; integrated discrimination improvement 5.78%, p = 0.0003). CONCLUSIONS: sIL-2Rα levels represent a novel, independent prognostic marker that can improve the currently used risk stratification of AIS patients. Our findings also highlight that elevated plasma sIL-2Rα and IL-2 levels manifested opposite correlations with functional outcome, underlining the importance of IL-2/IL-2R autocrine loops in AIS.


Asunto(s)
Interleucina-2/sangre , Accidente Cerebrovascular Isquémico/sangre , Receptores de Interleucina-2/sangre , Anciano , Biomarcadores/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
8.
Stroke ; 49(9): 2200-2210, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30354980

RESUMEN

Background and Purpose- Although intracellular zinc accumulation has been shown to contribute to neuronal death after cerebral ischemia, the mechanism by which zinc keeps on accumulating to cause severe brain damage remains unclear. Herein the dynamic cause-effect relationships between zinc accumulation and reactive oxygen species (ROS) production during cerebral ischemia/reperfusion are investigated. Methods- Rats were treated with zinc chelator, ROS scavenger, mitochondria-targeted ROS inhibitor, or NADPH oxidase inhibitor during a 90-minute middle cerebral artery occlusion. Cytosolic labile zinc, ROS level, cerebral infarct volume, and neurological functions were assessed after ischemia/reperfusion. Results- Zinc and ROS were colocalized in neurons, leading to neuronal apoptotic death. Chelating zinc reduced ROS production at 6 and 24 hours after reperfusion, whereas eliminating ROS reduced zinc accumulation only at 24 hours. Furthermore, suppression of mitochondrial ROS production reduced the total ROS level and brain damage at 6 hours after reperfusion but did not change zinc accumulation, indicating that ROS is produced mainly from mitochondria during early reperfusion and the initial zinc release is upstream of ROS generation after ischemia. Suppression of NADPH oxidase decreased ROS generation, zinc accumulation, and brain damage only at 24 hours after reperfusion, indicating that the majority of ROS is produced by NADPH oxidase at later reperfusion time. Conclusions- This study provides the direct evidence that there exists a positive feedback loop between zinc accumulation and NADPH oxidase-induced ROS production, which greatly amplifies the damaging effects of both. These findings reveal that different ROS-generating source contributes to ischemia-generated ROS at different time, underscoring the critical importance of spatial and temporal factors in the interaction between ROS and zinc accumulation, and the consequent brain injury, after cerebral ischemia/reperfusion.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Quelantes/farmacología , Infarto de la Arteria Cerebral Media/metabolismo , Neuronas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Zinc/metabolismo , Animales , Compuestos de Bifenilo/farmacología , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Etilenodiaminas/farmacología , NADPH Oxidasas/antagonistas & inhibidores , Neuronas/metabolismo , Compuestos Onio/farmacología , Compuestos Organometálicos/farmacología , Pramipexol/farmacología , Ratas , Salicilatos/farmacología
9.
J Pharmacol Sci ; 138(1): 16-22, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30197059

RESUMEN

Nitrosative/oxidative stress plays an important role in neuronal death following cerebral ischemia/reperfusion (I/R). Chrysophanol (CHR) has been shown to afford significant neuroprotection on ischemic stroke, however, whether its mechanism is related to attenuating nitrosative/oxidative stress is not clear. In the present study, we investigated the effect of CHR on neuronal injury related to nitric oxide (NO) production by using mouse middle cerebral artery occlusion (MCAO) model. Our results revealed that nitrite plus nitrate (NOx-) and 3-nitrotyrosine (3-NT) levels increased in ischemic brain 14 days after reperfusion, and were subsequently attenuated by CHR treatment. Moreover, 3-NT is colocalized with NeuN and TUNEL, suggesting that neuronal apoptosis following I/R is associated with 3-NT and CHR suppresses NO-associated neuronal cell death. Accordingly, cleaved caspase-3 expression in ischemic brain was decreased by CHR treatment. I/R also decreased the activity of total superoxide dismutase (SOD) and manganese-dependent SOD (MnSOD), whilst increased reactive oxygen species (ROS) production significantly. Interestingly, CHR reversed this decrease in total SOD, and MnSOD activity, and inhibited ROS generation in the ischemic brain. Taken together, our results provide direct evidence suggesting that CHR attenuates nitrosative/oxidative stress injury induced by I/R, providing a novel therapeutic target in the treatment of acute ischemic stroke.


Asunto(s)
Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Isquemia Encefálica/metabolismo , Fármacos Neuroprotectores , Nitrosación/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Daño por Reperfusión/metabolismo , Animales , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/etiología , Superóxido Dismutasa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
10.
CNS Neurosci Ther ; 30(7): e14825, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954749

RESUMEN

AIMS: Ischemic stroke remains a challenge in medical research because of the limited treatment options. Recombinant human tissue plasminogen activator (rtPA) is the primary treatment for recanalization. However, nearly 50% of the patients experience complications that result in ineffective reperfusion. The precise factors contributing to ineffective reperfusion remain unclear; however, recent studies have suggested that immune cells, notably neutrophils, may influence the outcome of rtPA thrombolysis via mechanisms such as the formation of neutrophil extracellular traps. This study aimed to explore the nonthrombolytic effects of rtPA on neutrophils and highlight their contribution to ineffective reperfusion. METHODS: We evaluated the effects of rtPA treatment on middle cerebral artery occlusion in rats. We also assessed neutrophil infiltration and activation after rtPA treatment in vitro and in vivo in a small cohort of patients with massive cerebral ischemia (MCI). RESULTS: rtPA increased neutrophil infiltration into the brain microvessels and worsened blood-brain barrier damage during ischemia. It also increased the neutrophil counts of the patients with MCI. CONCLUSION: Neutrophils play a crucial role in promoting ischemic injury and blood-brain barrier disruption, making them potential therapeutic targets.


Asunto(s)
Fibrinolíticos , Neutrófilos , Proteínas Recombinantes , Activador de Tejido Plasminógeno , Activador de Tejido Plasminógeno/farmacología , Activador de Tejido Plasminógeno/uso terapéutico , Animales , Humanos , Masculino , Neutrófilos/efectos de los fármacos , Ratas , Proteínas Recombinantes/farmacología , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratas Sprague-Dawley , Anciano , Barrera Hematoencefálica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Femenino , Infiltración Neutrófila/efectos de los fármacos , Persona de Mediana Edad , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/inmunología , Modelos Animales de Enfermedad
11.
CNS Neurosci Ther ; 30(3): e14676, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488446

RESUMEN

AIM: To explore the neuroprotective effects of ARA290 and the role of ß-common receptor (ßCR) in a mouse model of middle cerebral artery occlusion (MCAO). METHODS: This study included male C57BL/6J mice that underwent MCAO and reperfusion. The neuroprotective effect of ARA290 on MCAO-induced brain injury was investigated using neurological function tests (Longa and modified neurological severity score). Cerebral infarction was examined by 2, 3, 5-triphenyl tetrazolium chloride staining, neuronal apoptosis was assessed by immunofluorescence staining, blood parameters were measured using a flow cytometry-based automated hematology analyzer, liquid chromatography with tandem mass spectrometry was used to identify the serum metabolomics signature, inflammatory cytokines and liver index were detected by commercially available kits, and the protein levels of the erythropoietin (EPO) receptor and ßCR were measured by western blot. RESULTS: ARA290 exerted a qualitatively similar neuroprotective effect after MCAO as EPO. ARA290 significantly reduced neuronal apoptosis and the level of inflammatory cytokines in the brain tissue. However, ARA290's neuroprotective effect was significantly suppressed following the injection of siRNA against ßCR. CONCLUSION: ARA290 provided a neuroprotective effect via ßCR in cerebral ischemic mice without causing erythropoiesis. This study provides novel insights into the role of ARA290 in ischemic stroke intervention.


Asunto(s)
Isquemia Encefálica , Eritropoyetina , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Oligopéptidos , Daño por Reperfusión , Accidente Cerebrovascular , Ratones , Masculino , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Eritropoyetina/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/genética , Péptidos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Citocinas , Encéfalo , Isquemia Encefálica/tratamiento farmacológico
12.
Front Cell Neurosci ; 17: 1065873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970418

RESUMEN

Intracellular zinc accumulation has been shown to be associated with neuronal death after cerebral ischemia. However, the mechanism of zinc accumulation leading to neuronal death in ischemia/reperfusion (I/R) is still unclear. Intracellular zinc signals are required for the production of proinflammatory cytokines. The present study investigated whether intracellular accumulated zinc aggravates I/R injury through inflammatory response, and inflammation-mediated neuronal apoptosis. Male Sprague-Dawley rats were treated with vehicle or zinc chelator TPEN 15 mg/kg before a 90-min middle cerebral artery occlusion (MCAO). The expressions of proinflammatory cytokines TNF-α, IL-6, NF-κB p65, and NF-κB inhibitory protein IκB-α, as well as anti-inflammatory cytokine IL-10 were assessed at 6 or 24 h after reperfusion. Our results demonstrated that the expression of TNF-α, IL-6, and NF-κB p65 increased after reperfusion, while the expression of IκB-α and IL-10 decreased, suggesting that cerebral ischemia triggers inflammatory response. Furthermore, TNF-α, NF-κB p65, and IL-10 were all colocalized with the neuron-specific nuclear protein (NeuN), suggesting that the ischemia-induced inflammatory response occurs in neurons. Moreover, TNF-α was also colocalized with the zinc-specific dyes Newport Green (NG), suggesting that intracellular accumulated zinc might be associated with neuronal inflammation following cerebral I/R. Chelating zinc with TPEN reversed the expression of TNF-α, NF-κB p65, IκB-α, IL-6, and IL-10 in ischemic rats. Besides, IL-6-positive cells were colocalized with TUNEL-positive cells in the ischemic penumbra of MCAO rats at 24 h after reperfusion, indicating that zinc accumulation following I/R might induce inflammation and inflammation-associated neuronal apoptosis. Taken together, this study demonstrates that excessive zinc activates inflammation and that the brain injury caused by zinc accumulation is at least partially due to specific neuronal apoptosis induced by inflammation, which may provide an important mechanism of cerebral I/R injury.

13.
J Am Heart Assoc ; 12(17): e029817, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37655472

RESUMEN

Background Thrombolysis and endovascular thrombectomy are the primary treatment for ischemic stroke. However, due to the limited time window and the occurrence of adverse effects, only a small number of patients can genuinely benefit from recanalization. Intraarterial injection of rtPA (recombinant tissue plasminogen activator) based on arterial thrombectomy could improve the prognosis of patients with acute ischemic stroke, but it could not reduce the incidence of recanalization-related adverse effects. Recently, selective brain hypothermia has been shown to offer neuroprotection against stroke. To enhance the recanalization rate of ischemic stroke and reduce the adverse effects such as tiny thrombosis, brain edema, and hemorrhage, we described for the first time a combined approach of hypothermia and thrombolysis via intraarterial hypothermic rtPA. Methods and Results We initially established the optimal regimen of hypothermic rtPA in adult rats subjected to middle cerebral artery occlusion. Subsequently, we explored the mechanism of action mediating hypothermic rtPA by probing reduction of brain tissue temperature, attenuation of blood-brain barrier damage, and sequestration of inflammation coupled with untargeted metabolomics. Hypothermic rtPA improved neurological scores and reduced infarct volume, while limiting hemorrhagic transformation in middle cerebral artery occlusion rats. These therapeutic outcomes of hypothermic rtPA were accompanied by reduced brain temperature, glucose metabolism, and blood-brain barrier damage. A unique metabolomic profile emerged in hypothermic rtPA-treated middle cerebral artery occlusion rats characterized by downregulated markers for energy metabolism and inflammation. Conclusions The innovative use of hypothermic rtPA enhances their combined, as opposed to stand-alone, neuroprotective effects, while reducing hemorrhagic transformation in ischemic stroke.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hipotermia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratas , Activador de Tejido Plasminógeno , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Neuroprotección , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Accidente Cerebrovascular/prevención & control , Inflamación , Terapia Trombolítica
14.
Brain Commun ; 5(5): fcad261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869577

RESUMEN

We determined the structural and functional alterations in the insula and its subregions in patients with idiopathic tinnitus in order to identify the neural changes involved in the progression from recent onset to chronic tinnitus. We recruited 24 recent-onset tinnitus patients, 32 chronic tinnitus patients and 36 healthy controls. We measured the grey matter volume and fractional amplitude of low-frequency fluctuation of the insula and its subregions and the functional connectivity within the insula and between the insula and the rest of the brain. Relationships between MRI and clinical characteristics were estimated using partial correlation analysis. Both recent-onset and chronic tinnitus patients showed decreased fractional amplitude of low-frequency fluctuation in the insula and its subregions, but only chronic tinnitus patients showed bilateral grey matter atrophy in the ventral anterior insula. Abnormal functional connectivity was detected in recent-onset and chronic tinnitus patients relative to the healthy controls, but functional connectivity differences between recent-onset and chronic tinnitus patients were found in only the auditory-related cortex, frontal cortex and limbic system. Functional alterations (fractional amplitude of low-frequency fluctuation and functional connectivity of the left ventral anterior insula), but not structural changes, were correlated with clinical severity. Bilateral grey matter atrophy in the ventral anterior insula decreased regional activities in the left ventral anterior insula and left posterior insula, and abnormal functional connectivity of the insula subregions with auditory and non-auditory areas were implicated in the progression from recent onset to chronic tinnitus. This suggests that tinnitus generation and development occur in a dynamic manner and involve aberrant multi-structural and functional (regional brain activity and abnormal functional connectivity) reorganization of the insula.

15.
Neurosci Lett ; 795: 137034, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36584806

RESUMEN

Nitric oxide (NO) was one of the key factors to sustain hypoxia-inducible factor-1- α (HIF-1α) activation during hypoxia. However, the mechanism by which NO production promotes upregulation of HIF-1α to cause cerebral ischemia/reperfusion (I/R) injury remains unclear. The present study investigated whether eliminating NO would decrease HIF-1α level, and then reduce the subsequent inflammatory actions as well as neuronal apoptotic death in middle cerebral artery occlusion (MCAO) rats. Our results revealed that HIF-1α was correlated with 3-NT, a marker for nitrosative/oxidative stress, in the brain of MCAO rats. Treatment with NOS inhibitor L-NAME suppressed HIF-1α/3-NT double-positive cells, suggesting that HIF-1α was correlated with NO overproduction during cerebral I/R. Furthermore, pro-inflammatory cytokines TNF-α, IL-1ß and NF-κB p65 were significantly increased and colocalized with HIF-1α in the brain of MCAO rats, all of which could be attenuated by NO inhibition, suggesting that eliminating NO reduced MCAO-induced HIF-1α upregulation, which in turn exerted anti-inflammatory actions. Accordingly, cleaved caspase-3, as well as HIF-1α and TUNEL double-positive cells in ischemic brain were also decreased by L-NAME treatment. These results suggest that NO accumulation after cerebral ischemia leads to HIF-1α upregulation, which may activate pro-inflammatory cytokines, resulting in neuronal apoptotic death. These findings demonstrate a novel mechanism of NO-induced cerebral I/R injury.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Óxido Nítrico , NG-Nitroarginina Metil Éster , Isquemia Encefálica/terapia , Apoptosis , Infarto de la Arteria Cerebral Media , Hipoxia , Inflamación , Citocinas , Subunidad alfa del Factor 1 Inducible por Hipoxia
16.
CNS Neurosci Ther ; 29(12): 4070-4081, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37392024

RESUMEN

AIMS: This study systematically investigated structural and functional alterations in the thalamus and its subregions using multimodal magnetic resonance imaging (MRI) and examined its clinical relevance in tinnitus patients with different outcomes after sound therapy (narrowband noise). METHODS: In total, 60 patients with persistent tinnitus and 57 healthy controls (HCs) were recruited. Based on treatment efficacy, 28 patients were categorized into the effective group and 32 into the ineffective group. Five MRI measurements of the thalamus and its seven subregions, including gray matter volume, fractional anisotropy, fractional amplitude of low-frequency fluctuation, and functional connectivity (FC), were obtained for each participant and compared between the groups. RESULTS: Patients in both the groups exhibited widespread functional and diffusion abnormalities in the whole thalamus and several subregions, with more obvious changes observed in the effective group. All tinnitus patients had abnormal FC compared with the HCs; FC differences between the two patient groups were only observed in the striatal network, auditory-related cortex, and the core area of the limbic system. We combined the multimodal quantitative thalamic alterations and used it as an imaging indicator to evaluate prognosis before sound therapy and achieved a sensitivity of 71.9% and a specificity of 85.7%. CONCLUSION: Similar patterns of thalamic alterations were identified in tinnitus patients with different outcomes, with more obvious changes observed in the effective group. Our findings support the tinnitus generation hypothesis of frontostriatal gating system dysfunction. A combination of multimodal quantitative thalamic properties may be used as indicators to predict tinnitus prognosis before sound therapy.


Asunto(s)
Acúfeno , Humanos , Acúfeno/diagnóstico por imagen , Acúfeno/terapia , Acúfeno/patología , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Sistema Límbico/patología , Tálamo/diagnóstico por imagen
17.
CNS Neurosci Ther ; 29(3): 866-877, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36419252

RESUMEN

AIMS: Remote ischemic pre-conditioning (RIPC) protects against ischemia/reperfusion (I/R) injury. However, the mechanisms underlying this protection remain unclear. In the present study, we investigated the role of Janus-activated kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway and cell cycle arrest, and their relationship with neuronal apoptosis following RIPC. METHODS: A rat cerebral I/R injury model was induced by middle cerebral artery occlusion (MCAO), and AG490 was used to investigate the mechanisms of RIPC. p-JAK2-, p-STAT3-, cyclin D1-, and cyclin-dependent kinase 6 (CDK6) expression was assessed by Western blotting and immunofluorescence staining. RESULTS: RIPC reduced the infarct volume, improved neurological function, and increased neuronal survival. Furthermore, p-JAK2 and p-STAT3 were detected during the initial phase of reperfusion; the expression levels were significantly increased at 3 and 24 h after reperfusion and were suppressed by RIPC. Additionally, the MCAO-induced upregulation of the cell cycle regulators cyclin D1 and CDK6 was ameliorated by RIPC. Meanwhile, cyclin D1 and CDK6 were colocalized with p-STAT3 in the ischemic brain. CONCLUSION: RIPC ameliorates the induction of the JAK2/STAT3 pathway and cell cycle regulators cyclin D1 and CDK6 by MCAO, and this net inhibition of cell cycle re-entry by RIPC is associated with downregulation of STAT3 phosphorylation.


Asunto(s)
Isquemia Encefálica , Precondicionamiento Isquémico , Daño por Reperfusión , Ratas , Animales , Factor de Transcripción STAT3/metabolismo , Ciclina D1/metabolismo , Ciclina D1/farmacología , Transducción de Señal , Isquemia Encefálica/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Ciclo Celular , Miembro Posterior , Janus Quinasa 2/metabolismo , Janus Quinasa 2/farmacología
18.
Transl Stroke Res ; 14(4): 589-607, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35906328

RESUMEN

Circulating neutrophils are activated shortly after stroke and in turn affect the fate of ischemic brain tissue, and microRNAs (miRNA) participate in regulating neuroinflammation. We probed the role of neutrophilic miRNA in ischemic stroke. miR-193a-5p was decreased in circulating neutrophils of acute ischemic stroke (AIS) patients and healthy controls. In another set of AIS patients treated with recombinant tissue plasminogen activator, higher neutrophilic miR-193a-5p levels were associated with favorable outcomes at 3 months and non-symptomatic intracerebral hemorrhage. An experimental stroke model and human neutrophil-like HL-60 cells were further transfected with agomiR-193a-5p/antagomiR-193a-5p or ubiquitin-conjugating enzyme V2 (UBE2V2)-siRNA prior to model induction for in vivo and in vitro studies. Results of 2,3,5-triphenyl tetrazolium chloride staining and neurological function evaluations at post-experimental stroke showed that intravenous agomiR-193a-5p transfusion protected against ischemic cerebral injury in the acute stage and promoted neurological recovery in the subacute stage. This protective role was suggested to correlate with neutrophil N2 transformation based on the N2-like neutrophil proportions in the bone marrow, peripheral blood, and spleen of the experimental stroke model and the measurement of neutrophil phenotype-associated molecule levels. Mechanistically, analyses indicated that UBE2V2 might be a target of miR-193a-5p. Cerebral injury and neuroinflammation aggravated by miR-193a-5p inhibition were reversed by UBE2V2 silencing. In conclusion, miR-193a-5p protects against cerebral ischemic injury by restoring neutrophil N2 phenotype-associated neuroinflammation suppression, likely, in part, via UBE2V2 induction.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , Humanos , Neutrófilos , Enfermedades Neuroinflamatorias , Activador de Tejido Plasminógeno , MicroARNs/genética
19.
Emerg Med Int ; 2022: 8178963, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811607

RESUMEN

Middle cerebral artery aneurysm is a common type of intracranial aneurysm in neurosurgery, accounting for about 20% of intracranial aneurysms, and is the third most common site of intracranial aneurysms. The surgical success rate and postoperative recovery ability of today's treatment plans are not satisfactory. Therefore, this paper designs a health model based on data analysis to clinically apply clipping surgery for cerebral aneurysm. This paper studies data analytics health models in the context of big data analytics. The model combines the characteristics of cerebral aneurysms for targeted analysis, and then through the understanding of the clipping treatment of cerebral aneurysms, this paper combines the deep learning in the neural network to train the treatment plan under the data analysis health model. Finally, this paper designs a therapeutic plan for clipping treatment of cerebral aneurysm based on a data analysis health model. To verify its data analysis ability, this paper designs experiments on unbalanced data sets and experiments to improve the execution efficiency of the algorithm. After analyzing the results obtained from the experiment, this paper will apply them to the clinic. The final experiment showed that the surgical success rate of the clipping treatment for cerebral aneurysm based on the data analysis health model was increased by 21.84% compared with the traditional clipping treatment for cerebral aneurysm.

20.
Front Pharmacol ; 13: 949290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910391

RESUMEN

Purpose: We aimed to examine the prognostic value of syndecan-1 as a marker of glycocalyx injury in patients with acute ischemic stroke (AIS) receiving rt-PA intravenous thrombolysis. Methods: The study included 108 patients with AIS treated with rt-PA intravenous thrombolysis and 47 healthy controls. Patients were divided into unfavorable and favorable prognosis groups based on modified Rankin Scale scores. Univariate and multivariate logistic regression analyses were used to determine risk factors affecting prognosis. Risk prediction models presented as nomograms. The predictive accuracy and clinical value of the new model were also evaluated. Results: Plasma levels of syndecan-1 were significantly higher in patients with AIS than in controls (p < 0.05). Univariate analysis indicated that higher levels of syndecan-1 were more frequent in patients with poor prognosis than in those with good prognosis (t = -4.273, p < 0.001). Syndecan-1 alone and in combination with other factors predicted patient outcomes. After adjusting for confounding factors, syndecan-1 levels remained associated with poor prognosis [odds ratio, 1.024; 95% confidence interval (CI), 1.010-1.038]. The risk model exhibited a good fit, with an area under the receiver operating characteristic curve of 0.935 (95% CI, 0.888-0.981). The categorical net reclassification index (NRI) and continuous NRI values were >0. The integrated discrimination improvement value was 0.111 (95% CI, 0.049-0.174, p < 0.001). Decision curve analysis indicated that the model incorporating syndecan-1 levels was more clinically valuable than the conventional model. Conclusion: Plasma syndecan-1 levels represent a potential marker of prognosis of AIS following intravenous thrombolysis. Adding syndecan-1 to the conventional model may improve risk stratification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA