Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 210(2): 186-200, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38261629

RESUMEN

Rationale: The airway microbiome has the potential to shape chronic obstructive pulmonary disease (COPD) pathogenesis, but its relationship to outcomes in milder disease is unestablished. Objectives: To identify sputum microbiome characteristics associated with markers of COPD in participants of the Subpopulations and Intermediate Outcome Measures of COPD Study (SPIROMICS). Methods: Sputum DNA from 877 participants was analyzed using 16S ribosomal RNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic, and mucoinflammatory markers, including longitudinal lung function trajectory, were examined. Measurements and Main Results: Participant data represented predominantly milder disease (Global Initiative for Chronic Obstructive Lung Disease stage 0-2 obstruction in 732 of 877 participants). Phylogenetic diversity (i.e., range of different species within a sample) correlated positively with baseline lung function, decreased with higher Global Initiative for Chronic Obstructive Lung Disease stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (P < 0.001). In covariate-adjusted regression models, organisms robustly associated with better lung function included Alloprevotella, Oribacterium, and Veillonella species. Conversely, lower lung function, greater symptoms, and radiographic measures of small airway disease were associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features were also associated with lung function trajectory during SPIROMICS follow-up (stable/improved, decline, or rapid decline groups). The stable/improved group (slope of FEV1 regression ⩾66th percentile) had greater bacterial diversity at baseline associated with enrichment in Prevotella, Leptotrichia, and Neisseria species. In contrast, the rapid decline group (FEV1 slope ⩽33rd percentile) had significantly lower baseline diversity associated with enrichment in Streptococcus species. Conclusions: In SPIROMICS, baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.


Asunto(s)
Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Esputo , Humanos , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Masculino , Femenino , Esputo/microbiología , Persona de Mediana Edad , Anciano , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Biomarcadores
2.
Am J Respir Cell Mol Biol ; 70(3): 165-177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37976469

RESUMEN

Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Enfermedad Pulmonar Obstructiva Crónica/genética , Diferenciación Celular , Metilación de ADN , Progresión de la Enfermedad , Epigénesis Genética , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas
3.
Am J Respir Crit Care Med ; 208(3): 247-255, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286295

RESUMEN

Rationale: Acute exacerbations of chronic obstructive pulmonary disease (AE-COPDs) are associated with a significant disease burden. Blood immune phenotyping may improve our understanding of a COPD endotype at increased risk of exacerbations. Objective: To determine the relationship between the transcriptome of circulating leukocytes and COPD exacerbations. Methods: Blood RNA sequencing data (n = 3,618) from the COPDGene (Genetic Epidemiology of COPD) study were analyzed. Blood microarray data (n = 646) from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study were used for validation. We tested the association between blood gene expression and AE-COPDs. We imputed the abundance of leukocyte subtypes and tested their association with prospective AE-COPDs. Flow cytometry was performed on blood in SPIROMICS (Subpopulations and Intermediate Outcomes in COPD Study) (n = 127), and activation markers for T cells were tested for association with prospective AE-COPDs. Measurements and Main Results: Exacerbations were reported 4,030 and 2,368 times during follow-up in COPDGene (5.3 ± 1.7 yr) and ECLIPSE (3 yr), respectively. We identified 890, 675, and 3,217 genes associated with a history of AE-COPDs, persistent exacerbations (at least one exacerbation per year), and prospective exacerbation rate, respectively. In COPDGene, the number of prospective exacerbations in patients with COPD (Global Initiative for Chronic Obstructive Lung Disease stage ⩾2) was negatively associated with circulating CD8+ T cells, CD4+ T cells, and resting natural killer cells. The negative association with naive CD4+ T cells was replicated in ECLIPSE. In the flow-cytometry study, an increase in CTLA4 on CD4+ T cells was positively associated with AE-COPDs. Conclusions: Individuals with COPD with lower circulating lymphocyte counts, particularly decreased CD4+ T cells, are more susceptible to AE-COPDs, including persistent exacerbations.


Asunto(s)
Linfocitos T CD8-positivos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudios Prospectivos , Progresión de la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Transcriptoma
4.
J Allergy Clin Immunol ; 151(4): 931-942, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36572355

RESUMEN

BACKGROUND: Asthma and obesity are both complex conditions characterized by chronic inflammation, and obesity-related severe asthma has been associated with differences in the microbiome. However, whether the airway microbiome and microbiota-immune response relationships differ between obese persons with or without nonsevere asthma is unestablished. OBJECTIVE: We compared the airway microbiome and microbiota-immune mediator relationships between obese and nonobese subjects, with and without mild-moderate asthma. METHODS: We performed cross-sectional analyses of the airway (induced sputum) microbiome and cytokine profiles from blood and sputum using 16S ribosomal RNA gene and internal transcribed spacer region sequencing to profile bacteria and fungi, and multiplex immunoassays. Analysis tools included QIIME 2, linear discriminant analysis effect size (aka LEfSe), Piphillin, and Sparse inverse covariance estimation for ecological association inference (aka SPIEC-EASI). RESULTS: Obesity, irrespective of asthma status, was associated with significant differences in sputum bacterial community structure and composition (unweighted UniFrac permutational analysis of variance, P = .02), including a higher relative abundance of Prevotella, Gemella, and Streptococcus species. Among subjects with asthma, additional differences in sputum bacterial composition and fungal richness were identified between obese and nonobese individuals. Correlation network analyses demonstrated differences between obese and nonobese asthma in relationships between cytokine mediators, and these together with specific airway bacteria involving blood PAI-1, sputum IL-1ß, GM-CSF, IL-8, TNF-α, and several Prevotella species. CONCLUSION: Obesity itself is associated with an altered sputum microbiome, which further differs in those with mild-moderate asthma. The distinct differences in airway microbiota and immune marker relationships in obese asthma suggest potential involvement of airway microbes that may affect mechanisms or outcomes of obese asthma.


Asunto(s)
Asma , Microbiota , Humanos , Estudios Transversales , Sistema Respiratorio/microbiología , Microbiota/genética , Bacterias , Esputo
5.
Am J Respir Crit Care Med ; 206(4): 427-439, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35536732

RESUMEN

Rationale: Chronic obstructive pulmonary disease (COPD) is variable in its development. Lung microbiota and metabolites collectively may impact COPD pathophysiology, but relationships to clinical outcomes in milder disease are unclear. Objectives: Identify components of the lung microbiome and metabolome collectively associated with clinical markers in milder stage COPD. Methods: We analyzed paired microbiome and metabolomic data previously characterized from bronchoalveolar lavage fluid in 137 participants in the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), or (GOLD [Global Initiative for Chronic Obstructive Lung Disease Stage 0-2). Datasets used included 1) bacterial 16S rRNA gene sequencing; 2) untargeted metabolomics of the hydrophobic fraction, largely comprising lipids; and 3) targeted metabolomics for a panel of hydrophilic compounds previously implicated in mucoinflammation. We applied an integrative approach to select features and model 14 individual clinical variables representative of known associations with COPD trajectory (lung function, symptoms, and exacerbations). Measurements and Main Results: The majority of clinical measures associated with the lung microbiome and metabolome collectively in overall models (classification accuracies, >50%, P < 0.05 vs. chance). Lower lung function, COPD diagnosis, and greater symptoms associated positively with Streptococcus, Neisseria, and Veillonella, together with compounds from several classes (glycosphingolipids, glycerophospholipids, polyamines and xanthine, an adenosine metabolite). In contrast, several Prevotella members, together with adenosine, 5'-methylthioadenosine, sialic acid, tyrosine, and glutathione, associated with better lung function, absence of COPD, or less symptoms. Significant correlations were observed between specific metabolites and bacteria (Padj < 0.05). Conclusions: Components of the lung microbiome and metabolome in combination relate to outcome measures in milder COPD, highlighting their potential collaborative roles in disease pathogenesis.


Asunto(s)
Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Adenosina , Humanos , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , ARN Ribosómico 16S/genética
6.
Am J Respir Cell Mol Biol ; 67(2): 155-163, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35914321

RESUMEN

This report presents the proceedings from a workshop titled "Microbiome, Metabolism and Immunoregulation of Asthma" that was held virtually May 13 and 14, 2021. The workshop was jointly sponsored by the American Thoracic Society (Assembly on Allergy, Immunology, and Inflammation) and the National Institute of Allergy and Infectious Diseases. It convened an interdisciplinary group of experts with backgrounds in asthma immunology, microbiome science, metabolomics, computational biology, and translational pulmonary research. The main purpose was to identify key scientific gaps and needs to further advance research on microbial and metabolic mechanisms that may contribute to variable immune responses and disease heterogeneity in asthma. Discussions were structured around several topics, including 1) immune and microbial mechanisms of asthma pathogenesis in murine models, 2) the role of microbes in pediatric asthma exacerbations, 3) dysregulated metabolic pathways in asthma associated with obesity, 4) metabolism effects on macrophage function in adipose tissue and the lungs, 5) computational approaches to dissect microbiome-metabolite links, and 6) potential confounders of microbiome-disease associations in human studies. This report summarizes the major points of discussion, which included identification of specific knowledge gaps, challenges, and suggested directions for future research. These include questions surrounding mechanisms by which microbiota and metabolites shape host health versus an allergic or asthmatic state; direct and indirect influences of other biological factors, exposures, and comorbidities on these interactions; and ongoing technical and analytical gaps for clinical translation.


Asunto(s)
Asma , Hipersensibilidad , Microbiota , Animales , Asma/etiología , Niño , Humanos , Hipersensibilidad/complicaciones , Inmunidad , Ratones , National Institute of Allergy and Infectious Diseases (U.S.) , Estados Unidos
7.
Eur Respir J ; 58(1)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33446604

RESUMEN

BACKGROUND: Microbiome studies of the lower airways based on bacterial 16S rRNA gene sequencing assess microbial community structure but can only infer functional characteristics. Microbial products, such as short-chain fatty acids (SCFAs), in the lower airways have significant impact on the host's immune tone. Thus, functional approaches to the analyses of the microbiome are necessary. METHODS: Here we used upper and lower airway samples from a research bronchoscopy smoker cohort. In addition, we validated our results in an experimental mouse model. We extended our microbiota characterisation beyond 16S rRNA gene sequencing with the use of whole-genome shotgun (WGS) and RNA metatranscriptome sequencing. SCFAs were also measured in lower airway samples and correlated with each of the sequencing datasets. In the mouse model, 16S rRNA gene and RNA metatranscriptome sequencing were performed. RESULTS: Functional evaluations of the lower airway microbiota using inferred metagenome, WGS and metatranscriptome data were dissimilar. Comparison with measured levels of SCFAs shows that the inferred metagenome from the 16S rRNA gene sequencing data was poorly correlated, while better correlations were noted when SCFA levels were compared with WGS and metatranscriptome data. Modelling lower airway aspiration with oral commensals in a mouse model showed that the metatranscriptome most efficiently captures transient active microbial metabolism, which was overestimated by 16S rRNA gene sequencing. CONCLUSIONS: Functional characterisation of the lower airway microbiota through metatranscriptome data identifies metabolically active organisms capable of producing metabolites with immunomodulatory capacity, such as SCFAs.


Asunto(s)
Bacterias , Microbiota , Animales , Bacterias/genética , Genómica , Metagenoma , Ratones , ARN Ribosómico 16S/genética
8.
Respir Res ; 22(1): 277, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702264

RESUMEN

Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease with mortality driven primarily by respiratory failure. Patients with LAM frequently have respiratory infections, suggestive of a dysregulated microbiome. Here we demonstrate that end-stage LAM patients have a distinct microbiome signature compared to patients with end-stage chronic obstructive pulmonary disease.


Asunto(s)
Pulmón/microbiología , Linfangioleiomiomatosis/microbiología , Microbiota , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Infecciones del Sistema Respiratorio/microbiología , Progresión de la Enfermedad , Disbiosis , Humanos , Enfermedades Pulmonares Fúngicas/diagnóstico , Enfermedades Pulmonares Fúngicas/microbiología , Linfangioleiomiomatosis/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Infecciones del Sistema Respiratorio/diagnóstico , Ribotipificación
9.
FASEB J ; 34(3): 4718-4731, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32030817

RESUMEN

Resident alveolar macrophages (AMs) suppress allergic inflammation in murine asthma models. Previously we reported that resident AMs can blunt inflammatory signaling in alveolar epithelial cells (ECs) by transcellular delivery of suppressor of cytokine signaling 3 (SOCS3) within extracellular vesicles (EVs). Here we examined the role of vesicular SOCS3 secretion as a mechanism by which AMs restrain allergic inflammatory responses in airway ECs. Bronchoalveolar lavage fluid (BALF) levels of SOCS3 were reduced in asthmatics and in allergen-challenged mice. Ex vivo SOCS3 secretion was reduced in AMs from challenged mice and this defect was mimicked by exposing normal AMs to cytokines associated with allergic inflammation. Both AM-derived EVs and synthetic SOCS3 liposomes inhibited the activation of STAT3 and STAT6 as well as cytokine gene expression in ECs challenged with IL-4/IL-13 and house dust mite (HDM) extract. This suppressive effect of EVs was lost when they were obtained from AMs exposed to allergic inflammation-associated cytokines. Finally, inflammatory cell recruitment and cytokine generation in the lungs of OVA-challenged mice were attenuated by intrapulmonary pretreatment with SOCS3 liposomes. Overall, AM secretion of SOCS3 within EVs serves as a brake on airway EC responses during allergic inflammation, but is impaired in asthma. Synthetic liposomes encapsulating SOCS3 can rescue this defect and may serve as a framework for novel therapeutic approaches targeting airway inflammation.


Asunto(s)
Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Adolescente , Adulto , Anciano , Animales , Asma/inmunología , Asma/metabolismo , Western Blotting , Línea Celular , Polaridad Celular/fisiología , Femenino , Humanos , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Liposomas/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteína 3 Supresora de la Señalización de Citocinas/genética , Adulto Joven
10.
J Allergy Clin Immunol ; 146(5): 1016-1026, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32298699

RESUMEN

BACKGROUND: Whether microbiome characteristics of induced sputum or oral samples demonstrate unique relationships to features of atopy or mild asthma in adults is unknown. OBJECTIVE: We sought to determine sputum and oral microbiota relationships to clinical or immunologic features in mild atopic asthma and the impact on the microbiota of inhaled corticosteroid (ICS) treatment administered to ICS-naive subjects with asthma. METHODS: Bacterial microbiota profiles were analyzed in induced sputum and oral wash samples from 32 subjects with mild atopic asthma before and after inhaled fluticasone treatment, 18 atopic subjects without asthma, and 16 nonatopic healthy subjects in a multicenter study (NCT01537133). Associations with clinical and immunologic features were examined, including markers of atopy, type 2 inflammation, immune cell populations, and cytokines. RESULTS: Sputum bacterial burden inversely associated with bronchial expression of type 2 (T2)-related genes. Differences in specific sputum microbiota also associated with T2-low asthma phenotype, a subgroup of whom displayed elevations in lung inflammatory mediators and reduced sputum bacterial diversity. Differences in specific oral microbiota were more reflective of atopic status. After ICS treatment of patients with asthma, the compositional structure of sputum microbiota showed greater deviation from baseline in ICS nonresponders than in ICS responders. CONCLUSIONS: Novel associations of sputum and oral microbiota to immunologic features were observed in this cohort of subjects with or without ICS-naive mild asthma. These findings confirm and extend our previous report of reduced bronchial bacterial burden and compositional complexity in subjects with T2-high asthma, with additional identification of a T2-low subgroup with a distinct microbiota-immunologic relationship.


Asunto(s)
Corticoesteroides/uso terapéutico , Asma/microbiología , Hipersensibilidad Inmediata/microbiología , Microbiota/genética , Boca/microbiología , Esputo/microbiología , Células Th2/inmunología , Administración por Inhalación , Adulto , Asma/tratamiento farmacológico , Biomarcadores , Citocinas/metabolismo , Femenino , Humanos , Hipersensibilidad Inmediata/tratamiento farmacológico , Masculino , Resultado del Tratamiento
11.
Am J Respir Cell Mol Biol ; 62(3): 283-299, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31661299

RESUMEN

The lung microbiome is associated with host immune response and health outcomes in experimental models and patient cohorts. Lung microbiome research is increasing in volume and scope; however, there are no established guidelines for study design, conduct, and reporting of lung microbiome studies. Standardized approaches to yield reliable and reproducible data that can be synthesized across studies will ultimately improve the scientific rigor and impact of published work and greatly benefit microbiome research. In this review, we identify and address several key elements of microbiome research: conceptual modeling and hypothesis framing; study design; experimental methodology and pitfalls; data analysis; and reporting considerations. Finally, we explore possible future directions and research opportunities. Our goal is to aid investigators who are interested in this burgeoning research area and hopefully provide the foundation for formulating consensus approaches in lung microbiome research.


Asunto(s)
Métodos Epidemiológicos , Pulmón/microbiología , Microbiota , Animales , Antiinfecciosos/farmacología , Técnicas de Tipificación Bacteriana , Líquidos Corporales/microbiología , Pruebas Respiratorias , Disbiosis/microbiología , Exposición a Riesgos Ambientales , Interacciones Microbiota-Huesped , Humanos , Metagenómica/métodos , Técnicas Microbiológicas , Microbiota/efectos de los fármacos , Modelos Animales , Modelos Biológicos , Reproducibilidad de los Resultados , Sistema Respiratorio/microbiología , Manejo de Especímenes/métodos , Esputo/microbiología , Investigación Biomédica Traslacional , Secuenciación Completa del Genoma
12.
Curr Opin Pulm Med ; 26(1): 27-32, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31567329

RESUMEN

PURPOSE OF REVIEW: Asthma is a heterogeneous condition shaped not only by genetics but also host conditioning by environmental factors. Recognizing the ecological context of microbe-immune interactions across environments and body sites is a necessary step toward better understanding how human microbiota influence or drive the pathogenesis and pathophysiology of asthma in its various presentations. RECENT FINDINGS: There is increasing evidence of a critical role for microbiota in asthma pathogenesis and outcomes across various body compartments, including the upper and lower airways, and gut. We discuss recent studies from this area including: development of a method to quantify microbial farm-effect in nonfarm environments, relationships between environmental microbial exposures and asthma prevalence across different geographies, microbiome-mediated responses to ozone, and microbiome-immune interactions within and across body compartments. Beyond bacteria, recent reports of asthma-associated differences in archaea and fungal organisms also are highlighted. SUMMARY: Collective evidence warrants application of an ecological framework to advance mechanistic insights into microbiota-immune interactions in asthma. This is necessary to achieve goals of developing successful therapeutic interventions targeting modification of microbiomes.


Asunto(s)
Asma , Interacciones Huésped-Patógeno , Inmunidad , Microbiota/fisiología , Asma/inmunología , Asma/microbiología , Fenómenos Ecológicos y Ambientales , Humanos
14.
Ann Allergy Asthma Immunol ; 122(3): 270-275, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30552986

RESUMEN

OBJECTIVE: To synthesize evidence on the role of microbiota in asthma pathogenesis, phenotype, and treatment outcomes, and to provide perspective on future research directions and challenges. DATA SOURCES: Studies identified from a PubMed search, including all or some of the terms "asthma," "microbiome," "microbiota," "gut," "airway," "respiratory," "lung," "viral," and "fungal". STUDY SELECTIONS: Studies included and referenced based on the authors' opinion of the study design and methods, value of the research questions, and the relevance of the results to the objective of the article. RESULTS: Many studies have demonstrated an important role for intestinal or upper airway microbiota in mediating the pathogenesis of childhood asthma. Fewer but robust studies have implicated a role for lower respiratory tract microbiota in adult asthma phenotype, including effects of treatments. Bacterial and fungal members of the respiratory microbiota are associated with and may drive specific molecular phenotypes of asthma in adults. CONCLUSION: Current evidence supports the role of human microbiota changes in shaping asthma risk, pathogenesis, and clinical presentation. Further understanding of how microbiota functionally mediate these aspects in clinically relevant contexts will require better integration of advanced scientific tools, analytic methods, and well-designed clinical studies. These efforts should be pursued with a systems-level perspective of the complex interactions between human hosts and their microbiomes, and the impact on these interactions of changes in environmental and lifestyle factors across the lifespan.


Asunto(s)
Asma/microbiología , Asma/terapia , Microbiota , Animales , Humanos , Fenotipo
17.
J Allergy Clin Immunol ; 139(4): 1099-1110, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28257972

RESUMEN

PRACTALL is a joint initiative of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology to provide shared evidence-based recommendations on cutting-edge topics in the field of allergy and immunology. PRACTALL 2017 is focused on what has been established regarding the role of the microbiome in patients with asthma, atopic dermatitis, and food allergy. This is complemented by outlining important knowledge gaps regarding its role in allergic disease and delineating strategies necessary to fill these gaps. In addition, a review of progress in approaches used to manipulate the microbiome will be addressed, identifying what has and has not worked to serve as a baseline for future directions to intervene in allergic disease development, progression, or both.


Asunto(s)
Alergia e Inmunología , Hipersensibilidad/microbiología , Microbiota/inmunología , Animales , Humanos
18.
J Allergy Clin Immunol ; 140(1): 63-75, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27838347

RESUMEN

BACKGROUND: Compositional differences in the bronchial bacterial microbiota have been associated with asthma, but it remains unclear whether the findings are attributable to asthma, to aeroallergen sensitization, or to inhaled corticosteroid treatment. OBJECTIVES: We sought to compare the bronchial bacterial microbiota in adults with steroid-naive atopic asthma, subjects with atopy but no asthma, and nonatopic healthy control subjects and to determine relationships of the bronchial microbiota to phenotypic features of asthma. METHODS: Bacterial communities in protected bronchial brushings from 42 atopic asthmatic subjects, 21 subjects with atopy but no asthma, and 21 healthy control subjects were profiled by using 16S rRNA gene sequencing. Bacterial composition and community-level functions inferred from sequence profiles were analyzed for between-group differences. Associations with clinical and inflammatory variables were examined, including markers of type 2-related inflammation and change in airway hyperresponsiveness after 6 weeks of fluticasone treatment. RESULTS: The bronchial microbiome differed significantly among the 3 groups. Asthmatic subjects were uniquely enriched in members of the Haemophilus, Neisseria, Fusobacterium, and Porphyromonas species and the Sphingomonodaceae family and depleted in members of the Mogibacteriaceae family and Lactobacillales order. Asthma-associated differences in predicted bacterial functions included involvement of amino acid and short-chain fatty acid metabolism pathways. Subjects with type 2-high asthma harbored significantly lower bronchial bacterial burden. Distinct changes in specific microbiota members were seen after fluticasone treatment. Steroid responsiveness was linked to differences in baseline compositional and functional features of the bacterial microbiome. CONCLUSION: Even in subjects with mild steroid-naive asthma, differences in the bronchial microbiome are associated with immunologic and clinical features of the disease. The specific differences identified suggest possible microbiome targets for future approaches to asthma treatment or prevention.


Asunto(s)
Asma/microbiología , Bronquios/microbiología , Hipersensibilidad Inmediata/microbiología , Microbiota , Administración por Inhalación , Corticoesteroides/uso terapéutico , Adulto , Asma/tratamiento farmacológico , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bronquios/efectos de los fármacos , Femenino , Fluticasona/uso terapéutico , Humanos , Hipersensibilidad Inmediata/tratamiento farmacológico , Masculino , Persona de Mediana Edad , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA