Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 135(3): 434-449, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38864216

RESUMEN

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 (nuclear factor of activated T cells/myocyte enhancer factor-2) pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1 (KRAB-associated protein-1). lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.


Asunto(s)
Cardiomegalia , Ratones Noqueados , ARN Largo no Codificante , Animales , Humanos , Masculino , Ratones , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/prevención & control , Cardiomegalia/patología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/prevención & control , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Remodelación Ventricular
2.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950607

RESUMEN

In recent years, the role of microbial tryptophan (Trp) catabolism in host-microbiota crosstalk has become a major area of scientific interest. Microbiota-derived Trp catabolites positively contribute to intestinal and systemic homeostasis by acting as ligands of aryl hydrocarbon receptor and pregnane X receptor, and as signaling molecules in microbial communities. Accumulating evidence suggests that microbial Trp catabolism could be therapeutic targets in treating human diseases. A number of bacteria and metabolic pathways have been identified to be responsible for the conversion of Trp in the intestine. Interestingly, many Trp-degrading bacteria can benefit from the supplementation of specific dietary fibers and polyphenols, which in turn increase the microbial production of beneficial Trp catabolites. Thus, this review aims to highlight the emerging role of diets and food components, i.e., food matrix, fiber, and polyphenol, in modulating the microbial catabolism of Trp and discuss the opportunities for potential therapeutic interventions via specifically designed diets targeting the Trp-microbiome axis.

3.
Anal Chem ; 95(39): 14746-14753, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37723832

RESUMEN

The ability to specifically image cancer cells is essential for cancer diagnosis; however, this ability is limited by the false positive associated with single-biomarker sensors and off-site activation of "always active" nucleic acid probes. Herein, we propose an on-site, activatable, transmembrane logic DNA (TLD) nanodevice that enables dual-biomarker sensing of tumor-related nucleolin and intracellular microRNA for highly specific cancer cell imaging. The TLD nanodevice is constructed by assembling a tetrahedral DNA nanostructure containing a linker (L)-blocker (B)-DNAzyme (D)-substrate (S) unit. AS-apt, a DNA strand containing an elongated segment and the AS1411 aptamer, is pre-anchored to nucleolin protein, which is specifically expressed on the membrane of cancer cells. Initially, the TLD nanodevice is firmly sealed by the blocker containing an AS-apt recognition zone, which prevents off-site activation. When the nanodevice encounters a target cancer cell, AS-apt (input 1) binds to the blocker and unlocks the sensing ability of the nanodevice for miR-21 (input 2). The TLD nanodevice achieves dual-biomarker sensing from the cell membrane to the cytoplasm, thereby ensuring cancer cell-specific imaging. This TLD nanodevice represents a promising strategy for the highly reliable analysis of intracellular biomarkers and a promising platform for cancer diagnosis and related biomedical applications.


Asunto(s)
Aptámeros de Nucleótidos , MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Neoplasias/diagnóstico por imagen , ADN/química , Fosfoproteínas , Nucleolina
4.
Anal Chem ; 95(31): 11793-11799, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37402285

RESUMEN

Sensitive imaging of microRNAs (miRNAs) in living cells is significant for accurate cancer clinical diagnosis and prognosis research studies, but it is challenged by inefficient intracellular delivery, instability of nucleic acid probes, and limited amplification efficiency. Herein, we engineered a DNAzyme-amplified cascade catalytic hairpin assembly (CHA)-based nanosystem (DCC) that overcomes these challenges and improves the imaging sensitivity. This enzyme-free amplification nanosystem is based on the sequential activation of DNAzyme amplification and CHA. MnO2 nanosheets were used as nanocarriers for the delivery of nucleic acid probes, which can resist the degradation by nucleases and supply Mn2+ for the DNAzyme reaction. After entering into living cells, the MnO2 nanosheets can be decomposed by intracellular glutathione (GSH) and release the loaded nucleic acid probes. In the presence of target miRNA, the locking strand (L) was hybridized with target miRNA, and the DNAzyme was released, which then cleaved the substrate hairpin (H1). This cleavage reaction resulted in the formation of a trigger sequence (TS) that can activate CHA and recover the fluorescence readout. Meanwhile, the DNAzyme was released from the cleaved H1 and bound to other H1 for new rounds of DNAzyme-based amplification. The TS was also released from CHA and involved in the new cycle of CHA. By this DCC nanosystem, low-abundance target miRNA can activate many DNAzyme and generate numerous TS for CHA, resulting in sensitive and selective analysis of miRNAs with a limit of detection of 5.4 pM, which is 18-fold lower than that of the traditional CHA system. This stable, sensitive, and selective nanosystem holds great potential for miRNA analysis, clinical diagnosis, and other related biomedical applications.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , MicroARNs/genética , MicroARNs/análisis , ADN Catalítico/metabolismo , Compuestos de Manganeso , Óxidos , Catálisis , Técnicas Biosensibles/métodos , Límite de Detección
5.
Exp Cell Res ; 418(1): 113262, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35714940

RESUMEN

Pathological cardiac hypertrophy is an independent risk factor for the development of heart failure. Long noncoding RNAs (lncRNAs), an emerging class of non-protein-coding transcripts, are involved in regulation of multiple cardiac diseases through diverse molecular mechanism, whereas the role of cytoplasmic lncRNAs in regulating cardiac hypertrophy remains unclear. In this study, we identified a novel and functional long noncoding RNA Gm17501, which was predominantly expressed in the cytoplasm of cardiomyocytes. The expression level of lncRNA Gm17501 was altered in cardiac hypertrophy induced by pressure overload and phenylephrine treatment. Moreover, lncRNA Gm17501 expression was decreased in the heart tissue of patients with heart failure. Silencing lncRNA Gm17501 aggravated cardiac hypertrophy under pathological stress. Inhibition of lncRNA Gm17501 did not alter the expression of nearby genes but decreased mRNA level of calcium handling proteins which were involved in cardiac contraction. Therefore, the cytoplasmic lncRNA Gm17501 might protect cardiomyocytes against hypertrophy, possibly by maintaining calcium signaling pathway.


Asunto(s)
Insuficiencia Cardíaca , ARN Largo no Codificante , Animales , Cardiomegalia/patología , Regulación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
6.
Mol Ther ; 30(2): 898-914, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34400329

RESUMEN

Heart failure is a leading cause of fatality in Duchenne muscular dystrophy (DMD) patients. Previously, we discovered that cardiac and skeletal-muscle-enriched CIP proteins play important roles in cardiac function. Here, we report that CIP, a striated muscle-specific protein, participates in the regulation of dystrophic cardiomyopathy. Using a mouse model of human DMD, we found that deletion of CIP leads to dilated cardiomyopathy and heart failure in young, non-syndromic mdx mice. Conversely, transgenic overexpression of CIP reduces pathological dystrophic cardiomyopathy in old, syndromic mdx mice. Genome-wide transcriptome analyses reveal that molecular pathways involving fibrogenesis and oxidative stress are affected in CIP-mediated dystrophic cardiomyopathy. Mechanistically, we found that CIP interacts with dystrophin and calcineurin (CnA) to suppress the CnA-Nuclear Factor of Activated T cells (NFAT) pathway, which results in decreased expression of Nox4, a key component of the oxidative stress pathway. Overexpression of Nox4 accelerates the development of dystrophic cardiomyopathy in mdx mice. Our study indicates CIP is a modifier of dystrophic cardiomyopathy and a potential therapeutic target for this devastating disease.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Distrofia Muscular de Duchenne , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatía Dilatada/genética , Proteínas Co-Represoras , Distrofina/metabolismo , Corazón , Humanos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/patología , Proteínas Nucleares
7.
Nucleic Acids Res ; 49(D1): D1507-D1514, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33180112

RESUMEN

Europe PMC (https://europepmc.org) is a database of research articles, including peer reviewed full text articles and abstracts, and preprints - all freely available for use via website, APIs and bulk download. This article outlines new developments since 2017 where work has focussed on three key areas: (i) Europe PMC has added to its core content to include life science preprint abstracts and a special collection of full text of COVID-19-related preprints. Europe PMC is unique as an aggregator of biomedical preprints alongside peer-reviewed articles, with over 180 000 preprints available to search. (ii) Europe PMC has significantly expanded its links to content related to the publications, such as links to Unpaywall, providing wider access to full text, preprint peer-review platforms, all major curated data resources in the life sciences, and experimental protocols. The redesigned Europe PMC website features the PubMed abstract and corresponding PMC full text merged into one article page; there is more evident and user-friendly navigation within articles and to related content, plus a figure browse feature. (iii) The expanded annotations platform offers ∼1.3 billion text mined biological terms and concepts sourced from 10 providers and over 40 global data resources.


Asunto(s)
Disciplinas de las Ciencias Biológicas/estadística & datos numéricos , COVID-19/prevención & control , Curaduría de Datos/estadística & datos numéricos , Minería de Datos/estadística & datos numéricos , Bases de Datos Factuales/estadística & datos numéricos , PubMed , SARS-CoV-2/aislamiento & purificación , Disciplinas de las Ciencias Biológicas/métodos , Investigación Biomédica/métodos , Investigación Biomédica/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/virología , Curaduría de Datos/métodos , Minería de Datos/métodos , Epidemias , Europa (Continente) , Humanos , Internet , SARS-CoV-2/fisiología
8.
Proc Natl Acad Sci U S A ; 117(32): 19254-19265, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719146

RESUMEN

The appropriate arrangement of myonuclei within skeletal muscle myofibers is of critical importance for normal muscle function, and improper myonuclear localization has been linked to a variety of skeletal muscle diseases, such as centronuclear myopathy and muscular dystrophies. However, the molecules that govern myonuclear positioning remain elusive. Here, we report that skeletal muscle-specific CIP (sk-CIP) is a regulator of nuclear positioning. Genetic deletion of sk-CIP in mice results in misalignment of myonuclei along the myofibers and at specialized structures such as neuromuscular junctions (NMJs) and myotendinous junctions (MTJs) in vivo, impairing myonuclear positioning after muscle regeneration, leading to severe muscle dystrophy in mdx mice, a mouse model of Duchenne muscular dystrophy. sk-CIP is localized to the centrosome in myoblasts and relocates to the outer nuclear envelope in myotubes upon differentiation. Mechanistically, we found that sk-CIP interacts with the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex and the centriole Microtubule Organizing Center (MTOC) proteins to coordinately modulate myonuclear positioning and alignment. These findings indicate that sk-CIP may function as a muscle-specific anchoring protein to regulate nuclear position in multinucleated muscle cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Miopatías Estructurales Congénitas/fisiopatología , Proteínas Nucleares/metabolismo , Animales , Proteínas Portadoras/genética , Núcleo Celular/genética , Proteínas Co-Represoras , Humanos , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/fisiopatología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Proteínas Nucleares/genética , Especificidad de Órganos
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1324-1329, 2023 Nov 10.
Artículo en Zh | MEDLINE | ID: mdl-37906135

RESUMEN

OBJECTIVE: To explore the coagulation deficit and genetic basis for a Chinese pedigree affected with Congenital dysfibrinogenemia (CD). METHODS: Peripheral venous blood samples of the proband and her family members (including 4 individuals from three generations) were subjected to routine blood test and assays of liver and kidney functions and viral hepatitis to exclude related diseases. Clauss method and DFg-PT method were used to determine the fibrinogen activity (Fg:C), and an immunoturbidimetric assay was used to determine the level of fibrinogen antigen (Fg:Ag). All of the exons (22 in total) and their flanking sequences of the FGA, FGB and FGG genes were amplified by PCR and directly sequenced. Variants in the coding regions of the three genes and transcriptional splicing sites were screened by using Mutation SurveyorTM software. RESULTS: The Clauss method showed that Fg:C was significantly reduced in the proband and her father, whilst her mother and son were normal. With the DFg-PT method, the proband, her parents and son were all within the normal range. The Fg:C/Fg:Ag ratio of the proband and her father was lower than 0.7, whilst her mother and son were above 0.7. No significant change in the prothrombin time, activated partial thromboplastin clotting time and thrombin time was noted. Two genetic variants were detected, which included a homozygous missense variant in the FGA gene [c.991A>G (p.Thr331Ala)], which was predicted to be benign, and a heterozygous missense variant of the γ chain of the FGG gene [c.1211C>G (p.Ser404Phe)], which is located in a conserved region and unreported in the CLINVAR/HGMD/EXAC/1000G databases and literature. CONCLUSION: This pedigree has conformed to the autosomal dominant inheritance of CD. The c.1211C>T (p.Ser404Phe) missense variant of the γ chain of the FGG gene probably underlay the pathogenesis of CD in this pedigree. The variant was unreported previously and named as "Fibrinogen Harbin II Ser404Phe".


Asunto(s)
Afibrinogenemia , Pueblos del Este de Asia , Fibrinógeno , Femenino , Humanos , Afibrinogenemia/genética , Afibrinogenemia/congénito , Fibrinógeno/genética , Madres , Mutación , Linaje
10.
BMC Gastroenterol ; 22(1): 191, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35436855

RESUMEN

BACKGROUND: Methylated SDC2 has been proved as a diagnostic marker for human colorectal cancer (CRC), noninvasive stool DNA-based methylation testing also emerges as a novel approach for detecting CRC. The aim of this study was to evaluate the clinical performance of stool DNA-based SDC2 methylation test by a new qPCR detection reagent for early detection of CRC. METHODS: A new qPCR detection reagent contained two differentially methylated regions in SDC2 CpG islands for the detection of CRC was used in this study. Performance of the SDC2 methylation detection reagent was evaluated by analyzing limit of detection, precision, and specificity. The effect of interfering substances on assay performance was also tested. 339 subjects (102 CRC patients, 50 patients with advanced adenomas, 39 patients with non-advanced adenomas, 18 colitis patients and 130 normal individuals) from the China-Japan Friendship Hospital were evaluated. Approximately 2.5 g of stool sample was collected from each participant. Stool DNA was extracted and bisulfite-converted, followed by qPCR assay, which contained two pairs of primers for the methylation detection of two fragments of the SDC2 gene (named SDC2-A and SDC2-B). The diagnostic value of this test in CRC was evaluated by calculating receiver operating characteristic (ROC) curve, and value of the area under the curve (AUC). RESULTS: The test kit was able to detect methylated SDC2 in stool DNA samples with concentrations as low as 90 copies/µL in 100% of replicates. The sensitivity for detecting CRC by methylated SDC2-A alone was 85.29% (95% CI 77.03-91.00%) with a specificity of 96.15% (95% CI 91.08-98.58%). The sensitivity by methylated SDC2-B alone was 83.33% (95% CI 74.82-89.42%) with a specificity of 97.69% (95% CI 93.14-99.51%). However, when methylated SDC2-A and methylated SDC2-B were combined, the sensitivity for CRC detection improved to 87.25% (95% CI 79.27-92.53%) with a specificity of 94.62% (95% CI 89.11-97.56%). Further, the detection reagent achieved ROC-AUC 0.874 (95% CI 0.822-0.927) for SDC2-A, 0.906 (95% CI 0.859-0.952) for SDC2-B, and 0.939 (95% CI 0.902-0.977) for SDC2-Combine A&B. CONCLUSIONS: This study validated the capability of stool DNA-based SDC2 methylation test for early screening of CRC, and combined detection of two fragments of SDC2 gene could improve detection sensitivity.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Adenoma/diagnóstico , Adenoma/genética , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , ADN/análisis , Metilación de ADN , Detección Precoz del Cáncer/métodos , Heces/química , Humanos , Sensibilidad y Especificidad , Sindecano-2/genética
11.
Mol Ther ; 29(7): 2253-2267, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-33677093

RESUMEN

Hypertrophic growth of cardiomyocytes is one of the major compensatory responses in the heart after physiological or pathological stimulation. Protein synthesis enhancement, which is mediated by the translation of messenger RNAs, is one of the main features of cardiomyocyte hypertrophy. Although the transcriptome shift caused by cardiac hypertrophy induced by different stimuli has been extensively investigated, translatome dynamics in this cellular process has been less studied. Here, we generated a nucleotide-resolution translatome as well as transcriptome data from isolated primary cardiomyocytes undergoing hypertrophy. More than 10,000 open reading frames (ORFs) were detected from the deep sequencing of ribosome-protected fragments (Ribo-seq), which orchestrated the shift of the translatome in hypertrophied cardiomyocytes. Our data suggest that rather than increase the translational rate of ribosomes, the increased efficiency of protein synthesis in cardiomyocyte hypertrophy was attributable to an increased quantity of ribosomes. In addition, more than 100 uncharacterized short ORFs (sORFs) were detected in long noncoding RNA genes from Ribo-seq with potential of micropeptide coding. In a random test of 15 candidates, the coding potential of 11 sORFs was experimentally supported. Three micropeptides were identified to regulate cardiomyocyte hypertrophy by modulating the activities of oxidative phosphorylation, the calcium signaling pathway, and the mitogen-activated protein kinase (MAPK) pathway. Our study provides a genome-wide overview of the translational controls behind cardiomyocyte hypertrophy and demonstrates an unrecognized role of micropeptides in cardiomyocyte biology.


Asunto(s)
Cardiomegalia/patología , Miocitos Cardíacos/patología , Sistemas de Lectura Abierta , Fragmentos de Péptidos/farmacología , Biosíntesis de Proteínas , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Animales , Señalización del Calcio , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Biología Computacional , Genoma , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación Oxidativa , ARN Largo no Codificante/genética , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Ribosomas , Transcriptoma
12.
Blood Press ; 31(1): 200-206, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35941820

RESUMEN

PURPOSE: To investigate the relationship between morning blood pressure surge (MBPS) and neutrophilgelatinase associated lipocalin (NGAL) in patients with H-type hypertension. MATERIALS AND METHODS: A total of 224 patients with diagnosed H-type hypertension [homocysteine (Hcy)≧10umol/L] were selected and underwent 24-hour ambulatory blood pressure monitoring (ABPM). In the morning peak group (115 cases), NGAL and serum cystatin C levels, ß2-microglobulin levels were detected in each group, and general biochemical indicators were also detected. RESULTS: There was no significant difference in the course of hypertension, age, blood glucose, blood lipids, Hcy, BUN, Cr, and UA between the two groups (p > 0.05). CysC, ß2-MG were higher than those in the nonmorning peak group, and the difference was statistically significant (p < 0.05).; Pearson correlation analysis showed that NGAL was moderately and highly correlated with CysC, systolic blood pressure morning peak, ß2-MG, and high (p < 0.05), low-density lipoprotein (LDL-C), and Hcy were lowly correlated (p < 0.05).) and morning peak diastolic blood pressure (p > 0.05); multiple linear stepwise regression analysis indicated that morning peak systolic blood pressure, CysC,ß2-MG, and FBG were the risk factors for NGAL. CONCLUSION: The morning peak of systolic blood pressure in H-type hypertension is an important factor causing kidney injury. Paying attention to the ambulatory blood pressure monitoring and the control of morning peak blood pressure in patients with H-type hypertension, and early screening of NGAL has important clinical significance for the early prevention and treatment of renal injury in patients with H-type hypertension. PLAIN LANGUAGE SUMMARYThe morning peak of blood pressure is closely related to target organ damage.There are few studies on the relationship between morning peak phenomenon and renal damage in patients with H-type hypertension at home and abroad.We investigated the relationship between MBPS and NGAL in H-type hypertensive patients with BUN, Cr and UA in the normal range to provide a clinical basis for early renal protection in hypertensive patients.


Asunto(s)
Hipertensión , Lipocalina 2/metabolismo , Lipocalinas , Presión Sanguínea/fisiología , Monitoreo Ambulatorio de la Presión Arterial , Humanos , Riñón
13.
Angew Chem Int Ed Engl ; 61(47): e202211710, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36168096

RESUMEN

The transition-metal-catalyzed C-P bond cleavage has emerged as a powerful tool for the formation of both C-C and C-P bond. However, the transition-metal-catalyzed stereoselective cleavage of C-P bond is still undeveloped. Herein, we report a palladium-catalyzed stereoselective cleavage of C-P bond for the construction of P-stereogenic phosphines and stereogenic axis. This protocol enables the quick synthesis of atropisomers bearing a P-stereogenic center in high yields, diastereo- and enantioselectivities of up to 98 % ee, >25 : 1 dr. The product is able to serve as chiral catalyst in phosphine catalyzed [3+2] cycloaddition of allenoates to imines, showing the great potential of the present methodology.

14.
Cell Physiol Biochem ; 54(6): 1199-1217, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33252886

RESUMEN

BACKGROUND/AIMS: Obesity is a risk factor associated with cardiometabolic complications. Recently, we reported that miRNA-22 deletion attenuated high-fat diet-induced adiposity and prevented dyslipidemia without affecting cardiac hypertrophy in male mice. In this study, we examined the impact of miRNA-22 in obesogenic diet-induced cardiovascular and metabolic disorders in females. METHODS: Wild type (WT) and miRNA-22 knockout (miRNA-22 KO) females were fed a control or an obesogenic diet. Body weight gain, adiposity, glucose tolerance, insulin tolerance, and plasma levels of total cholesterol and triglycerides were measured. Cardiac and white adipose tissue remodeling was assessed by histological analyses. Echocardiography was used to evaluate cardiac function and morphology. RNA-sequencing analysis was employed to characterize mRNA expression profiles in female hearts. RESULTS: Loss of miRNA-22 attenuated body weight gain, adiposity, and prevented obesogenic diet-induced insulin resistance and dyslipidemia in females. WT obese females developed cardiac hypertrophy. Interestingly, miRNA-22 KO females displayed cardiac hypertrophy without left ventricular dysfunction and myocardial fibrosis. Both miRNA-22 deletion and obesogenic diet changed mRNA expression profiles in female hearts. Enrichment analysis revealed that genes associated with regulation of the force of heart contraction, protein folding and fatty acid oxidation were enriched in hearts of WT obese females. In addition, genes related to thyroid hormone responses, heart growth and PI3K signaling were enriched in hearts of miRNA-22 KO females. Interestingly, miRNA-22 KO obese females exhibited reduced mRNA levels of Yap1, Egfr and Tgfbr1 compared to their respective controls. CONCLUSION: This study reveals that miRNA-22 deletion induces cardiac hypertrophy in females without affecting myocardial function. In addition, our findings suggest miRNA-22 as a potential therapeutic target to treat obesity-related metabolic disorders in females.


Asunto(s)
Cardiomegalia , Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Enfermedades Metabólicas , MicroARNs/genética , Miocardio , Obesidad , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Femenino , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Miocardio/metabolismo , Miocardio/patología , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología
15.
J Sep Sci ; 43(7): 1240-1247, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31909564

RESUMEN

Diclazuril has been widely used in poultry feed for prevention and treatment of coccidiosis, and its chiral separation is rarely reported. Herein, semi-preparative separation method of diclazuril enantiomers has been developed through normal-phase high-performance liquid chromatography. Effects of chiral stationary phases, alcoholic modifiers, and column temperature on separation of diclazuril were discussed in detail. Both the single-urea-bound 4-chlorophenylcarbamoylated ß-cyclodextrin and amylose tris(3,5-dimethylphenylcarbamate)-coated chiral stationary phases showed strong ability in separation of diclazuril by using n-hexane-trifluoroacetic acid-ethanol. Then, semi-preparative separation of diclazuril was carried out through stacked injection, and the "enantiomeric excess" purities of two fractions were over 98%. Next, the electronic circular dichroism profiles of these two fractions in ethanol solution displayed the mirror image of each other in the range 360-200 nm. Moreover, effects of acidic/basic additive, time, and temperature on racemization of diclazuril enantiomers in ethanol solution have been studied in detail through normal-phase high-performance liquid chromatography. Racemization of diclazuril enantiomers was remarkably accelerated through adding triethylamine at high temperature. We envision that this systematic investigation of diclazuril at an enantiomeric level would provide valuable information in future studies involving enantioselective bioactive, metabolic, and toxicological activities.


Asunto(s)
Nitrilos/aislamiento & purificación , Triazinas/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Conformación Molecular , Nitrilos/química , Soluciones , Estereoisomerismo , Triazinas/química
16.
Nucleic Acids Res ; 46(D1): D1254-D1260, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29161421

RESUMEN

Europe PMC (https://europepmc.org) is a comprehensive resource of biomedical research publications that offers advanced tools for search, retrieval, and interaction with the scientific literature. This article outlines new developments since 2014. In addition to delivering the core database and services, Europe PMC focuses on three areas of development: individual user services, data integration, and infrastructure to support text and data mining. Europe PMC now provides user accounts to save search queries and claim publications to ORCIDs, as well as open access profiles for authors based on public ORCID records. We continue to foster connections between scientific data and literature in a number of ways. All the data behind the paper - whether in structured archives, generic archives or as supplemental files - are now available via links to the BioStudies database. Text-mined biological concepts, including database accession numbers and data DOIs, are highlighted in the text and linked to the appropriate data resources. The SciLite community annotation platform accepts text-mining results from various contributors and overlays them on research articles as licence allows. In addition, text miners and developers can access all open content via APIs or via the FTP site.


Asunto(s)
Investigación Biomédica , Bases de Datos Bibliográficas , Minería de Datos , Internet , Publicaciones Seriadas , Interfaz Usuario-Computador
17.
Mikrochim Acta ; 187(7): 416, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32607608

RESUMEN

A luminescent metal-organic framework of type Eu(III)-MOF has been fabricated for visual and on-site fluorometric determination of hydrogen peroxide (H2O2) via a tablet computer. The maximum excitation and emission peaks of type Eu(III)-MOF were found at λex = 290 nm and λem = 615 nm, respectively. The average length of Eu-MOF is 1.21 ± 0.07 µm. In the presence of the target H2O2, Fe2+ is transmitted into Fe3+ via Fenton reaction, leading to a fluorescence quenching of Eu-MOF. Therefore, visible color change occurred from bright red into colorless. Interestingly, by means of tablet computer's digital camera and ImageJ software, fluorescent signals were captured and transduced into digital parameters, resulting in a linear relationship between fluorescence intensity and the concentration of H2O2. As a result, the determination of H2O2 without the aid of complicated instruments is achieved in the range 2.0 µM to 0.2 mM with a detection limit of 1.02 µM. Our approach has been successfully applied to quantify H2O2 in serum, urine, and waste water with good recovery and precision (< 2.5% RSD). Besides, our assay has been exploited for visual detection of H2O2 released from HepG2 cells with the advantages of portability and accuracy. Moreover, the strategy displays acceptable selectivity and stability. Hence, our assay provides an alternative practical method for on-site determination of H2O2 without the need for instruments. Graphical abstract Schematic representation of the synthesis procedure of a luminescent Eu-MOF, which has been successfully applied for on-site detection of H2O2 via Fenton reaction and imaging analysis technique. The method exhibits handheld and accuracy for H2O2 determination, holding the potential for biochemical and clinical applications in remote regions.

18.
Orthopade ; 48(2): 119-124, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30574675

RESUMEN

BACKGROUND: Several studies have suggested that excellent therapeutic outcomes can be achieved with conservative treatment of proximal humeral epiphyseal fractures in patients younger than 11 years old; however, the outcomes of conservative treatment for children older than 11 years are controversial. To address this problem, this study compared outcomes of conservative treatment for proximal humeral epiphyseal fractures in pediatric patients of different ages. METHODS: The patients were divided into two groups for comparative purposes based on age. Group I consisted of 34 patients who were less than 11 years old (average age: 5 years) and group II included 21 patients who were 11 years of age or older (average age: 14 years). Patients in both groups underwent conservative treatment and follow-up examination, where they first were examined with X­radiography for assessment of deformity, fracture union and loss of reduction. At the final follow-up after 2 years, patients were assessed by an interview and a detailed physical examination including the assessment of shoulder function using the Constant-Murley score. RESULTS: There were no significant differences in the grading scale of varus deformity between the two groups (P > 0.05) after immediate postreduction X­radiography; however, there were significant differences in the grading scale of varus deformity between group I and group II at the 2­year follow-up (P < 0.05). There were no significant differences between the two groups with respect to the Constant-Murley score and arm length discrepancy (P > 0.05) at final follow-up examinations. CONCLUSION: In general, the results suggested that the outcomes, as measured with radiographs, for both older and young children were comparable after immediate postreduction roentgenograms. For long-term follow-up there was a difference between the two groups and the degree of angulation and displacement might be associated with treatment outcomes for older children. Thus, these factors should be considered when treating and evaluating the outcomes for older children.


Asunto(s)
Tratamiento Conservador , Fracturas del Hombro , Hombro , Actividades Cotidianas , Adolescente , Niño , Preescolar , Epífisis , Femenino , Fijación Interna de Fracturas , Humanos , Húmero , Masculino , Estudios Retrospectivos , Resultado del Tratamiento
19.
AAPS PharmSciTech ; 20(1): 30, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30603934

RESUMEN

The absorption-enhancing effects of glycol chitosan modified by 5ß-cholanic acid nanoparticles (5ß-CHA/GC-NPs) on a drug with poor absorption in the intestine were studied by the method of in situ closed loop. We chose fluorescein isothiocyanate-labeled dextrans (FDs) and insulin as the model drugs. 5ß-CHA/GC-NPs loaded to different drugs were prepared by the dialysis method, and the physicochemical characteristics and in vitro release profiles of nanoparticles were also estimated. The results showed that 5ß-CHA/GC-NPs markedly increased the absorption of insulin and FDs in the jejunum, ileum, and colon. The ratios of absorption for all the drugs in the jejunum were higher than those in the ileum and colon. In addition, the enhancing effect of 5ß-CHA/GC-NPs for the absorption of FDs from the jejunum was decreased with increasing molecular weights. In the toxicity test, 5ß-CHA/GC-NPs did not significantly increase the release of protein and the activities of LDH, indicating that the nanoparticles did not cause any membrane damage to the intestine. These findings suggested that 5ß-CHA/GC-NPs were safe and useful carriers for enhancing the absorption of the drug with poor absorption by intestinal membranes.


Asunto(s)
Quitosano/administración & dosificación , Fluoresceína-5-Isotiocianato/metabolismo , Insulina/metabolismo , Absorción Intestinal/fisiología , Mucosa Intestinal/metabolismo , Nanopartículas/administración & dosificación , Animales , Quitosano/química , Ácidos Cólicos/química , Portadores de Fármacos/química , Liberación de Fármacos , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Yeyuno/metabolismo , Masculino , Nanopartículas/química , Ratas , Ratas Wistar
20.
J Biol Chem ; 292(23): 9540-9550, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28381556

RESUMEN

Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3'-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Estabilidad del ARN/fisiología , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas Portadoras/genética , Línea Celular , Proteínas de Unión al ADN , Ratones , MicroARNs/genética , Proteínas de Unión al ARN , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA