Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Nanobiotechnology ; 21(1): 149, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149605

RESUMEN

Surface-Enhanced Raman Scattering (SERS) technology, as a powerful tool to identify molecular species by collecting molecular spectral signals at the single-molecule level, has achieved substantial progresses in the fields of environmental science, medical diagnosis, food safety, and biological analysis. As deepening research is delved into SERS sensing, more and more high-performance or multifunctional SERS substrate materials emerge, which are expected to push Raman sensing into more application fields. Especially in the field of biological analysis, intrinsic and extrinsic SERS sensing schemes have been widely used and explored due to their fast, sensitive and reliable advantages. Herein, recent developments of SERS substrates and their applications in biomolecular detection (SARS-CoV-2 virus, tumor etc.), biological imaging and pesticide detection are summarized. The SERS concepts (including its basic theory and sensing mechanism) and the important strategies (extending from nanomaterials with tunable shapes and nanostructures to surface bio-functionalization by modifying affinity groups or specific biomolecules) for improving SERS biosensing performance are comprehensively discussed. For data analysis and identification, the applications of machine learning methods and software acquisition sources in SERS biosensing and diagnosing are discussed in detail. In conclusion, the challenges and perspectives of SERS biosensing in the future are presented.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanoestructuras , Humanos , Espectrometría Raman/métodos , SARS-CoV-2 , Nanoestructuras/química , Nanotecnología , Técnicas Biosensibles/métodos
2.
Proc Natl Acad Sci U S A ; 117(2): 820-825, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879341

RESUMEN

Tailoring of individual single-atom-thick layers in nanolaminated materials offers atomic-level control over material properties. Nonetheless, multielement alloying in individual atomic layers in nanolaminates is largely unexplored. Here, we report 15 inherently nanolaminated V2(A xSn1-x)C (A = Fe, Co, Ni, Mn, and combinations thereof, with x ∼ 1/3) MAX phases synthesized by an alloy-guided reaction. The simultaneous occupancy of the 4 magnetic elements and Sn in the individual single-atom-thick A layers constitutes high-entropy MAX phase in which multielemental alloying exclusively occurs in the 2-dimensional (2D) A layers. V2(A xSn1-x)C exhibit distinct ferromagnetic behavior that can be compositionally tailored from the multielement A-layer alloying. Density functional theory and phase diagram calculations are performed to understand the structure stability of these MAX phases. This 2D multielemental alloying approach provides a structural design route to discover nanolaminated materials and expand their chemical and physical properties. In fact, the magnetic behavior of these multielemental MAX phases shows strong dependency on the combination of various elements.

3.
J Am Chem Soc ; 141(11): 4730-4737, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30821963

RESUMEN

Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.

4.
Nanotechnology ; 27(14): 145502, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26916627

RESUMEN

Semiconductor/noble metal composite SERS substrates have been extensively studied due to their unique bifunctionality. In this work, wheatear-like ZnO nanoarrarys have been fabricated via a modified low-temperature solution method. The hierarchical nanostructures that are constructed by stacked nanoflakes and long whiskers of ZnO possess a substantial number of characteristic nano corners and edges, which are proved to be beneficial to deposit more Ag nanoparticles (NPs). Furthermore, hydrogenated wheatear-like ZnO/AgNP composite substrates are achieved via a safe and facile solid hydrogen source (NaBH4). The hydrogenated ZnO/AgNPs (H-ZnO/Ag) substrates exhibit greatly improved SERS activity in detecting R6G molecules with an enhancement factor (EF) up to ∼0.49 × 10(8), over two orders of magnitude higher than that of the substrates before hydrogenation. The outstanding SERS performance of wheatear-like H-ZnO/Ag substrates benefits from the emerging porous structure of ZnO and abundant surface defects introduced by hydrogenation. In addition, the as-prepared substrates also show high detection sensitivity, good repeatability and recyclability, indicating great potential for practical applications.

5.
J Nanosci Nanotechnol ; 14(2): 1194-208, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24749422

RESUMEN

Porous platinum, that has outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, has been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive industries. As the catalytic activity and selectivity depend on the size, shape and structure of nanomaterials, the strategies for controlling these factors of platinum nanomaterials to get excellent catalytic properties are discussed. Here, recent advances in the design and preparation of various porous platinum nanostructures are reviewed, including wet-chemical synthesis, electro-deposition, galvanic replacement reaction and de-alloying technology. The applications of various platinum nanostructures are also discussed, especially in fuel cells.


Asunto(s)
Cristalización/métodos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Nanoporos/ultraestructura , Platino (Metal)/química , Catálisis , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
6.
Materials (Basel) ; 17(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38730961

RESUMEN

Zirconium carbide (ZrC) ceramics have a high melting point, low neutron absorption cross section, and excellent resistance to the impact of fission products and are considered to be one of the best candidate materials for fourth-generation nuclear energy systems. ZrC ceramics with a high relative density of 99.1% were successfully prepared via pressureless sintering using a small amount of MoSi2 as an additive. The influence of the MoSi2 content on the densification behavior, microstructure, mechanical properties, and thermal properties of ZrC ceramics was systematically investigated. The results show that the densification of ZrC was significantly enhanced by the introduction of MoSi2 due to the formation of a liquid phase during sintering. In addition, the ZrC grains were refined due to the pinning effect of the generated silicon carbide. The flexural strength and Vickers hardness of ZrC ceramics with 2.5 vol% MoSi2 sintered at 1850 °C were 408 ± 12 MPa and 17.1 GPa, respectively, which were approximately 30% and 10% higher compared to the samples without the addition of MoSi2. The improved mechanical properties were mainly attributed to the high relative density (99.1%) and refined microstructure.

7.
Materials (Basel) ; 17(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612122

RESUMEN

The effects of Ti doping on the microstructure and properties of SiCp/Al composites fabricated by pressureless infiltration were comprehensively investigated using first-principles calculations and experimental analyses. First-principles calculations revealed that the interface wetting and bonding strength in an Al/SiC system could be significantly enhanced by Ti doping. Subsequently, the Ti element was incorporated into SiC preforms in the form of TiO2 and TiC to verify the influence of Ti doping on the pressureless infiltration performance of SiCp/Al composites. The experimental results demonstrated that the pressureless infiltration of molten Al into SiC preforms was promoted by adding TiC or TiO2 due to the improved wettability. However, incorporating TiO2 leads to the growth of AlN whiskers under a N2 atmosphere, thereby hindering the complete densification of the composites. On the other hand, TiC doping can improve wettability and interface strength without deleterious reactions. As a consequence, the TiC-doped SiCp/Al composites exhibited excellent properties, including a high relative density of 99.4%, a bending strength of 287 ± 18 MPa, and a thermal conductivity of 142 W·m-1·K-1.

8.
ACS Appl Mater Interfaces ; 16(9): 11172-11184, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38388390

RESUMEN

Lateral flow immunoassay (LFIA) has been widely used for the early diagnosis of diseases. However, conventional colorimetric LFIA possesses limited sensitivity, and the single-mode readout signal is easily affected by the external environment, leading to insufficient accuracy. Herein, multifunctional Fe3O4@MoS2@Pt nanotags with a unique "pompon mum"-like structure were triumphantly prepared, exhibiting excellent peroxidase (POD)-like activity, photothermal properties, and magnetic separation capability. Furthermore, the Fe3O4@MoS2@Pt nanotags were used to establish dual-mode LFIA (dLFIA) for the first time, enabling the catalytic colorimetric and photothermal dual-mode detection of severe acute respiratory syndrome coronavirus 2 nucleocapsid protein (SARS-CoV-2 NP) and influenza A (H1N1). The calculated limits of detection (cLODs) of SARS-CoV-2 NP and H1N1 were 80 and 20 ng/mL in catalytic colorimetric mode and 10 and 8 ng/mL in photothermal mode, respectively, demonstrating about 100 times more sensitive than the commercial colloidal Au-LFIA strips (1 ng/mL for SARS-CoV-2 NP; 1 µg/mL for H1N1). The recovery rates of dLFIA in simulated nose swab samples were 95.2-103.8% with a coefficient of variance of 2.3-10.1%. These results indicated that the proposed dLFIA platform showed great potential for the rapid diagnosis of respiratory viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Nanopartículas del Metal , Molibdeno , Catálisis , Colorimetría , Inmunoensayo , Oro
9.
JACS Au ; 4(2): 730-743, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425902

RESUMEN

Motivated by the desire for more sensitivity and stable surface-enhanced Raman scattering (SERS) substrates to trace detect chloramphenicol due to its high toxicity and ubiquity, MXene has attracted increasing attention and is encountering the high-priority task of further observably improving detection sensitivity. Herein, a universal SERS optimization strategy that incorporates NH4VO3 to induce few-layer MXenes assembling into multiporous nanosheet stacking structures was innovatively proposed. The synthesized Nb2C-based multiporous nanosheet stacking structure can achieve a low limit of detection of 10-10 M and a high enhancement factor of 2.6 × 109 for MeB molecules, whose detection sensitivity is improved by 3 orders of magnitude relative to few-layer Nb2C MXenes. Such remarkably enhanced SERS sensitivity mainly originates from the multiple synergistic contributions of the developed physical adsorption, the chemical enhancement, and the conspicuously improved electromagnetic enhancement arising from the intersecting MXenes. Furthermore, the improved SERS sensitivity endows Nb2C-based multiporous structures with the capability to achieve ultrasensitive detection of chloramphenicol with a wide linear range from 100 µg/mL to 1 ng/mL. We believe it is of great significance in conspicuously developing the SERS sensitivity of other MXenes with surficial negative charges and has a great promising perspective for the trace detection of other antibiotics in microsystems.

10.
Materials (Basel) ; 16(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36676278

RESUMEN

Mesocarbon microbead-silicon carbide (MCMB-SiC) composites were prepared by hot-press sintering (2100 °C/40 MPa/1 h) with two different graphitized MCMBs as the second phase, which exhibited good self-lubricating properties. The effects of the graphitization degree of the MCMBs on the microstructure and properties of the composites were investigated contrastively. The results showed that the composites that added raw MCMBs with a low degree of graphitization had excellent self-sintering properties, higher densities, and better mechanical properties; by comparison, the composites that added mature MCMBs with a high degree of graphitization, which has regular and orderly lamellar structures, not only had good mechanical properties but also exhibited a lower and more stable dry friction coefficient (0.35), despite the higher wear rate (2.66 × 10-6 mm3·N-1·m-1). Large amounts of mature MCMBs were peeled off during the friction process to form a uniform and flat graphite lubricating film, which was the main reason for reducing the dry friction coefficient of the self-lubricating composites and making the friction coefficient more stable.

11.
Materials (Basel) ; 16(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37297306

RESUMEN

Polyaluminocarbosilane (PACS) is an important precursor for silicon carbide (SiC) fibers and ceramics. The structure of PACS and the oxidative curing, thermal pyrolysis, and sintering effect of Al have already been substantially studied. However, the structural evolution of polyaluminocarbosilane itself during the polymer-ceramic conversion process, especially the changes in the structure forms of Al, are still pending questions. In this study, PACS with a higher Al content is synthesized and the above questions are elaborately investigated by FTIR, NMR, Raman, XPS, XRD, and TEM analyses. It is found that up to 800-900 °C the amorphous SiOxCy, AlOxSiy, and free carbon phases are initially formed. With increasing temperature, the SiOxCy phase partially separates into SiO2 then reacts with free carbon. The AlOxSiy phase changes into Al3C4 and Al2O3 by reaction with free carbon at around 1100 °C. The complicated reactions between Al3C4, Al2O3, and free carbon occur, leading to the formation of the Al4O4C and Al2OC phases at around 1600 °C, which then react with the SiC and free carbon, resulting in the formation of the Al4SiC4 phase at 1800 °C. The amorphous carbon phase grows with the increasing temperature, which then turns into a crystalline graphitic structure at around 1600 °C. The growth of ß-SiC is inhibited by the existence of the Al4O4C, Al2OC, and Al4SiC4 phases, which also favor the formation of α-SiC at 1600-1800 °C.

12.
Nanomaterials (Basel) ; 13(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37887891

RESUMEN

In the present work, the recent advancements in additive manufacturing (AM) techniques for fabricating nanocomposite parts with complex shaped structures are explained, along with defect non-destructive testing (NDT) methods. A brief overview of the AM processes for nanocomposites is presented, grouped by the type of feedstock used in each technology. This work also reviews the defects in nanocomposites that can affect the quality of the final product. Additionally, a detailed description of X-CT, ultrasonic phased array technology, and infrared thermography is provided, highlighting their potential application in non-destructive inspection of nanocomposites in the future. Lastly, it concludes by offering recommendations for the development of NDT methods specifically tailored for nanocomposites, emphasizing the need to utilize NDT methods for optimizing nano-additive manufacturing process parameters, developing new NDT techniques, and enhancing the resolution of existing NDT methods.

13.
Materials (Basel) ; 16(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241413

RESUMEN

Dense SiC-based composite ceramics were fabricated by means of the ex situ addition of TaC using solid-state spark plasma sintering (SPS). Commercially available ß-SiC and TaC powders were chosen as raw materials. Electron backscattered diffraction (EBSD) analysis was conducted to investigate the grain boundary mapping of SiC-TaC composite ceramics. With the increase in TaC, the misorientation angles of the α-SiC phase shifted to a relatively small range. It was deduced that the ex situ pinning stress from TaC greatly suppressed the growth of α-SiC grains. The low ß→α transformability of the specimen with the composition of SiC-20 vol.% TaC (ST-4) implied that a possible microstructure of newly nucleated α-SiC embedded within metastable ß-SiC grains, which could have been responsible for the improvement in strength and fracture toughness. The as-sintered SiC-20 vol.% TaC (ST-4) composite ceramic had a relative density of 98.0%, a bending strength of 708.8 ± 28.7 MPa, a fracture toughness of 8.3 ± 0.8 MPa·m1/2, an elastic modulus of 384.9 ± 28.3 GPa and a Vickers hardness of 17.5 ± 0.4 GPa.

14.
Materials (Basel) ; 15(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35744303

RESUMEN

In this study, the joining of silicon carbide (SiC) ceramics was achieved via a Si-C reaction bonding method using the phenolic resin (PF)-MgCl2 system as the carbon precursor. Specifically, by adding MgCl2 to the phenolic resin mixture, the average pore size of the product of carbonization of the PF resin mixture increased from 14 ± 5 nm to 524 ± 21 nm, which was beneficial for the infiltration of molten silicon at high temperature. The microstructure of the joined specimens and the effect of the inert filler on the joint strength were investigated. It was demonstrated that SiC-SiC joints with strong interfacial bonding and high flexural strength could be obtained by the Si-C reaction bonding method using a phenol formaldehyde resin/alcohol sol-gel system as the carbon precursor. The flexural strength of the joined specimens reached the highest value, i.e., 308 ± 27 MPa when the solid loading of the inert filler was 26%. Overall, stable joining of silicon carbide ceramics was achieved by the proposed method, which has significance for realizing the preparation of complex-shaped or large silicon carbide ceramic parts.

15.
Materials (Basel) ; 15(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36079409

RESUMEN

In this study, different reaction-bonded boron carbide (RBBC) composites with a free carbon addition from 0 to 15 wt% were prepared, and the effect of the carbon content on the mechanical properties was discussed. With the free carbon addition increase from 0 to 15 wt%, the residual silicon content in the RBBC composite decreased first and then increased. Meanwhile, the strength of the RBBC composite improved first and then worsened. In the RBBC composite without free carbon, the B4C grains are obviously dissolved, the grains become facet-shape, and the grain boundary becomes straight. The microstructure of the composite was tested by SEM, and the phase composition of the composite was tested by XRD. The RBBC composite with the addition of 10 wt% free carbon has the highest flexural strength (444 MPa) and elastic modulus (329 GPa). In the composite with a 10 wt% carbon addition, the phase distribution is uniform and the structure is compact.

16.
Biosens Bioelectron ; 211: 114372, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598554

RESUMEN

The tissue inhibitor of metalloproteinases-1 (TIMP-1) protein can regulate the expression of certain proteases and microRNAs in cancer cells, and it is highly possible to diagnose cancers through analyzing the expression of TIMP-1 on exosomes. However, it is still a great challenge to obtain reliable physiological information on TIMP-1 by label-free method from exosomes in plasma. Here, we designed a porous-plasmonic SERS chip functionalized with synthesized CP05 polypeptide, which can specifically capture and distinguish exosomes from diverse origins. The SERS chip can accurately locate the plasmon in TIMP-1 protein to analyze the discrepancy of related fingerprint peaks of different exosomes. Based on the designed SERS chip, we successfully distinguished the lung and colon cancer cell-derived exosomes from normal exosomes at the single vesicle level by unique Raman spectroscopy and machine learning methods. This work not only provides a practical SERS chip for the application of Raman technology in human tumor monitoring and prognosis, but also provides a new idea for analyzing the feature of exosomes at the spectral level.


Asunto(s)
Técnicas Biosensibles , Neoplasias del Colon , Exosomas , Neoplasias Pulmonares , Línea Celular Tumoral , Neoplasias del Colon/diagnóstico , Exosomas/química , Humanos , Pulmón , Neoplasias Pulmonares/metabolismo , Espectrometría Raman/métodos , Inhibidor Tisular de Metaloproteinasa-1/análisis , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
17.
Matter ; 5(2): 694-709, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-34957388

RESUMEN

The current COVID-19 pandemic urges us to develop ultra-sensitive surface-enhanced Raman scattering (SERS) substrates to identify the infectiousness of SARS-CoV-2 virions in actual environments. Here, a micrometer-sized spherical SnS2 structure with the hierarchical nanostructure of "nano-canyon" morphology was developed as semiconductor-based SERS substrate, and it exhibited an extremely low limit of detection of 10-13 M for methylene blue, which is one of the highest sensitivities among the reported pure semiconductor-based SERS substrates. Such ultra-high SERS sensitivity originated from the synergistic enhancements of the molecular enrichment caused by capillary effect and the charge transfer chemical enhancement boosted by the lattice strain and sulfur vacancies. The novel two-step SERS diagnostic route based on the ultra-sensitive SnS2 substrate was presented to diagnose the infectiousness of SARS-CoV-2 through the identification standard of SERS signals for SARS-CoV-2 S protein and RNA, which could accurately identify non-infectious lysed SARS-CoV-2 virions in actual environments, whereas the current PCR methods cannot.

18.
J Nanosci Nanotechnol ; 11(12): 10930-4, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22409028

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is a powerful novel analytical tool which integrates high levels of sensitivity for trace analysis of chemical and biomolecular species due to the massive enhancement of Raman signals by using nanometre-sized metal particles. However, SERS can be envisaged as an analytical tool only if substrates with strong, predictable and reproducible SERS enhancement can be produced. Here we have developed one simple Ar+ ions sputtering technology to prepare gold nano-cones array on silicon substrates as surface-enhanced Raman scattering (SERS)-active substrates. The tip of the gold cone-structures exhibited an extremely sharp curvature with an apex diameter of 20 nm and the interior apex angle of the nanocones was around 20 degrees. These samples were evaluated as potential SERS substrates using Rhodamine 6G molecules as molecule probe and exhibited SERS enhancement factor of greater than 10, originated from the localized electron field enhancement around the apex of cones and the surface plasmon coupling of periodic structures.

19.
Polymers (Basel) ; 13(3)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535431

RESUMEN

Laser additive manufacturing is a promising technique for the preparation of complex-shaped SiC composites. High-quality powders are critical for high-precision laser printing. In this work, core-shell Cf @phenolic resin (PR) composites for selective laser sintering of carbon fiber reinforced silicon carbide (Cf/SiC) composites were fabricated by surface modification using 3-aminopropyltriethoxy silane coupling agent (KH550) in combination with planetary ball milling. PR coated uniformly on the fiber surface to form a core-shell structure. The effects of PR on the morphology, elemental composition, interfacial interactions, and laser absorption of the core-shell composite powder were investigated in detail. Results indicated that the composite powder exhibited good laser absorption within the infrared band.

20.
Materials (Basel) ; 14(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652926

RESUMEN

Boron carbide (B4C) ceramics were synthesized by spark plasma sintering at a temperature between 1600 and 2050 °C without employing any sintering additives. The effect of sintering process parameters, such as temperature, holding time, pressure, hearting rate, and pulsed electric current, and the particle size of the raw powder on the densification behavior and mechanical properties of B4C ceramics, were comprehensively and systematically investigated. Hardness and fracture toughness of B4C that has a density close to the theoretical value were found to be 33.5 ± 0.2 GPa and 3.21 ± 0.13 MPa·m1/2, respectively. Electron backscatter diffraction (EBSD) analysis revealed no abnormal growth of grains due to an increase in holding time and pressure. Twin structures present in ceramics are beneficial for their mechanical performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA