Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(3): 477-88, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25619689

RESUMEN

MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc(+/-)) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis, and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR, and S6K activities. In contrast to observations in other longevity models, Myc(+/-) mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan.


Asunto(s)
Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Envejecimiento , Animales , Tamaño Corporal , Femenino , Longevidad , Linfoma/genética , Masculino , Redes y Vías Metabólicas , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Transcriptoma
2.
J Virol ; 95(20): e0101021, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34319784

RESUMEN

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is poorly understood due to a lack of an animal model that recapitulates severe human disease. Here, we report a Syrian hamster model that develops progressive lethal pulmonary disease that closely mimics severe coronavirus disease 2019 (COVID-19). We evaluated host responses using a multi-omic, multiorgan approach to define proteome, phosphoproteome, and transcriptome changes. These data revealed both type I and type II interferon-stimulated gene and protein expression along with a progressive increase in chemokines, monocytes, and neutrophil-associated molecules throughout the course of infection that peaked in the later time points correlating with a rapidly developing diffuse alveolar destruction and pneumonia that persisted in the absence of active viral infection. Extrapulmonary proteome and phosphoproteome remodeling was detected in the heart and kidneys following viral infection. Together, our results provide a kinetic overview of multiorgan host responses to severe SARS-CoV-2 infection in vivo. IMPORTANCE The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has created an urgent need to understand the pathogenesis of this infection. These efforts have been impaired by the lack of animal models that recapitulate severe coronavirus disease 2019 (COVID-19). Here, we report a hamster model that develops severe COVID-19-like disease following infection with human isolates of SARS-CoV-2. To better understand pathogenesis, we evaluated changes in gene transcription and protein expression over the course of infection to provide an integrated multiorgan kinetic analysis of the host response to infection. These data reveal a dynamic innate immune response to infection and corresponding immune pathologies consistent with severe human disease. Altogether, this model will be useful for understanding the pathogenesis of severe COVID-19 and for testing interventions.


Asunto(s)
COVID-19/inmunología , COVID-19/metabolismo , Inmunidad Innata , Proteoma , Transcriptoma , Animales , COVID-19/genética , COVID-19/virología , Modelos Animales de Enfermedad , Ontología de Genes , Corazón/virología , Riñón/metabolismo , Riñón/virología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus , Miocardio/metabolismo , Fosfoproteínas/metabolismo , Proteómica , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Carga Viral
3.
J Med Primatol ; 48(1): 68-73, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30246873

RESUMEN

We present a case of hepatocellular carcinoma (HCC) in the placenta of healthy baboon (Papio spp.). Grossly, the fetal, maternal, and placental tissues were unremarkable. Histologically, the placenta contained an unencapsulated, poorly demarcated, infiltrative, solidly cellular neoplasm composed of cells that resembled hepatocytes. The neoplastic cells were diffusely positive for vimentin and focally positive for Ae1/Ae3, Arginase -1, glutamine synthetase, and CD10, and negative for ER, vascular markers (CD31 and D240), S100, glypican, C-reactive protein, FABP, desmin, and beta-catenin; INI1 positivity was similar to non-neoplastic tissues. The case likely represents a unique subtype of HCC.


Asunto(s)
Carcinoma Hepatocelular/veterinaria , Enfermedades de los Monos/patología , Papio , Placenta/patología , Animales , Animales de Zoológico , Carcinoma Hepatocelular/clasificación , Carcinoma Hepatocelular/patología , Femenino , Enfermedades de los Monos/clasificación , Embarazo
4.
J Med Primatol ; 47(6): 393-401, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30039863

RESUMEN

INTRODUCTION: Gut microbial communities are critical players in the pathogenesis of obesity. Pregnancy is associated with increased bacterial load and changes in gut bacterial diversity. Sparse data exist regarding composition of gut microbial communities in obesity combined with pregnancy. MATERIAL AND METHODS: Banked tissues were collected under sterile conditions during necropsy, from three non-obese (nOb) and four obese (Ob) near-term pregnant baboons. Sequences were assigned taxonomy using the Ribosomal Database Project classifier. Microbiome abundance and its difference between distinct groups were assessed by a nonparametric test. RESULTS: Three families predominated in both the nOb and Ob colonic microbiome: Prevotellaceae (25.98% and 32.71% respectively), Ruminococcaceae (12.96% and 7.48%), and Lachnospiraceae (8.78% and 11.74%). Seven families of the colon microbiome displayed differences between Ob and nOb groups. CONCLUSION: Changes in gut microbiome in pregnant obese animals open the venue for dietary manipulation in pregnancy.


Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Enfermedades de los Monos/microbiología , Obesidad/microbiología , Papio/microbiología , Animales , Bacterias/clasificación , Femenino , Embarazo
5.
J Med Primatol ; 46(3): 106-115, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28418090

RESUMEN

We present the spontaneous causes of mortality for 137 chimpanzees (Pan troglodytes) over a 35-year period. A record review of the pathology database was performed and a primary cause of mortality was determined for each chimpanzee. The most common causes of mortality were as follows: cardiomyopathy (40% of all mortalities), stillbirth/abortion, acute myocardial necrosis, chimpanzee-induced trauma, amyloidosis, and pneumonia. Five morphologic diagnoses accounted for 61% of mortalities: cardiomyopathy, hemorrhage, acute myocardial necrosis, amyloidosis, and pneumonia. The most common etiologies were degenerative, undetermined, bacterial, traumatic, and neoplastic. The cardiovascular system was most frequently involved, followed by the gastrointestinal, respiratory, and multisystemic diseases. Degenerative diseases were the primary etiological cause of mortality of the adult captive chimpanzee population. Chimpanzee-induced trauma was the major etiological cause of mortality among the perinatal and infant population. This information should be a useful resource for veterinarians and researchers working with chimpanzees.


Asunto(s)
Enfermedades del Simio Antropoideo/mortalidad , Causas de Muerte , Pan troglodytes , Animales , Animales de Laboratorio , Enfermedades del Simio Antropoideo/etiología , Masculino , Texas/epidemiología
6.
J Med Primatol ; 46(5): 271-290, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28543059

RESUMEN

We present the spontaneous pathological lesions identified as a result of necropsy or biopsy for 245 chimpanzees (Pan troglodytes) over a 35-year period. A review of the pathology database was performed for all diagnoses on chimpanzees from 1980 to 2014. All morphologic diagnoses, associated system, organ, etiology, and demographic information were reviewed and analyzed. Cardiomyopathy was the most frequent lesion observed followed by hemosiderosis, hyperplasia, nematodiasis, edema, and hemorrhage. The most frequently affected systems were the gastrointestinal, cardiovascular, urogenital, respiratory, and lymphatic/hematopoietic systems. The most common etiology was undetermined, followed by degenerative, physiologic, neoplastic, parasitic, and bacterial. Perinatal and infant animals were mostly affected by physiologic etiologies and chimpanzee-induced trauma. Bacterial and physiologic etiologies were more common in juvenile animals. Degenerative and physiologic (and neoplastic in geriatric animals) etiologies predominated in adult, middle aged, and geriatric chimpanzees.


Asunto(s)
Enfermedades del Simio Antropoideo/patología , Pan troglodytes , Animales , Enfermedades del Simio Antropoideo/epidemiología , Enfermedades del Simio Antropoideo/etiología , Biopsia/veterinaria , Incidencia
7.
Arch Biochem Biophys ; 576: 32-8, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25726727

RESUMEN

In spite of intensive study, there is still controversy about the free radical or oxidative stress theory of aging, particularly in mammals. Our laboratory has conducted the first detailed studies on the role of thioredoxin (Trx) in the cytosol (Trx1) and in mitochondria (Trx2) on oxidative stress and aging using unique mouse models either overexpressing or down-regulating Trx1 or Trx2. The results generated from our lab and others indicate that: (1) oxidative stress and subsequent changes in signaling pathways could have different pathophysiological impacts at different stages of life; (2) changes in redox-sensitive signaling controlled by levels of oxidative stress and redox state could play more important roles in pathophysiology than accumulation of oxidative damage; (3) changes in oxidative stress and redox state in different cellular compartments (cytosol, mitochondria, or nucleus) could play different roles in pathophysiology during aging, and their combined effects show more impact on aging than changes in either oxidative stress or redox state alone; and (4) the roles of oxidative stress and redox state could have different pathophysiological consequences in different organs/tissues/cells or pathophysiological conditions. To critically test the role of oxidative stress on aging and investigate changes in redox-sensitive signaling pathways, further study is required.


Asunto(s)
Envejecimiento , Estrés Oxidativo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Animales , Regulación hacia Abajo , Humanos , Longevidad , Tiorredoxinas/análisis , Regulación hacia Arriba
8.
Int J Syst Evol Microbiol ; 64(Pt 12): 4120-4128, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25242540

RESUMEN

Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60(T) and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60(T) and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60(T) ( = NCTC 13660(T) = CIRMBP 0958(T)).


Asunto(s)
Brucella/clasificación , Papio/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Brucella/genética , Brucella/aislamiento & purificación , ADN Bacteriano/genética , Femenino , Genes Bacterianos , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
J Med Primatol ; 43(3): 169-96, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24483852

RESUMEN

BACKGROUND: We report the causes of mortality for 4350 captive baboons that died or were euthanized due to natural causes during a 23 year period at the Southwest National Primate Research Center. METHODS: Necropsy records were retrieved and reviewed to determine a primary cause of death or indication for euthanasia. Data was evaluated for morphological diagnosis, organ system, and etiology. RESULTS: The 20 most common morphologic diagnoses accounted for 76% of the cases, including stillborn (10.8%); colitis (8.6%); hemorrhage (8.4%); ulcer (5.2%); seizures (4.7%); pneumonia (4.2%); inanition (4.1%); dermatitis (3.8%); spondylosis (3.3%); and amyloidosis (3.0%). The digestive system was most frequently involved (21.3%), followed by the urogenital (20.3%), cardiovascular (12.2%), and multisystem disease (10.3%). An etiology was not identified in approximately one-third of cases. The most common etiologies were trauma (14.8%), degenerative (9.5%), viral (8.7%), and neoplastic/proliferative (7.0%). CONCLUSION: This information should be useful for individuals working with baboons.


Asunto(s)
Animales de Laboratorio , Enfermedades de los Monos/mortalidad , Papio , Animales , Femenino , Masculino , Estaciones del Año , Texas/epidemiología
10.
Mutat Res ; 829: 111878, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39151334

RESUMEN

RAD51 is critical to the homologous recombination (HR) pathway that repairs DNA double strand breaks (DSBs) and protects replication forks (RFs). Previously, we showed that the S181P (SP) mutation in RAD51 causes defective RF maintenance but is proficient for DSB repair. Here we report that SP/SP female mice exhibit a shortened lifespan compared to +/+ females but not males. Histological analysis found that most mice in this study died from lymphoma, independent of genotype and sex. We propose that a potential cause for shortened lifespan in SP/SP females is due to the RF defect.

11.
J Med Primatol ; 41(4): 266-77, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22765381

RESUMEN

BACKGROUND: Air sacculitis is an important clinical condition in non-human primates. METHODS: We evaluated 37 baboons and seven chimpanzees with spontaneous air sacculitis submitted to pathology over a 20-year period. RESULTS: Air sacculitis was observed almost exclusively in males. Common reported signs were halitosis, coughing, nasal discharges, depression, anorexia, and weight loss. Gross lesions included thickened air sacs and suppurative exudate lining the walls. Microscopic lesions included marked epithelial hyperplasia or hypertrophy, necrosis, fibrosis, cellular infiltrates, and bacterial colonies. Mixed bacterial infections were more common than infections by single species of bacteria. Streptococcus sp. was the most frequent bacteria isolated in both baboons and chimpanzees. CONCLUSIONS: This is the first report describing the gross and microscopic lesions of air sacculitis in chimpanzees. The preponderance of males suggests a male sex predilection in baboons.


Asunto(s)
Sacos Aéreos/patología , Enfermedades del Simio Antropoideo/patología , Enfermedades de los Monos/patología , Infecciones del Sistema Respiratorio/veterinaria , Sacos Aéreos/microbiología , Animales , Enfermedades del Simio Antropoideo/microbiología , Femenino , Masculino , Enfermedades de los Monos/microbiología , Pan troglodytes , Papio , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/patología , Estudios Retrospectivos
12.
Proc Natl Acad Sci U S A ; 106(33): 13992-7, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19666551

RESUMEN

beta-Cell dysfunction is an important factor in the development of hyperglycemia of type-2 diabetes mellitus, and pancreatic islet amyloidosis (IA) has been postulated to be one of the main contributors to impaired insulin secretion. The aim of this study was to evaluate the correlation of IA with metabolic parameters and its effect on islets of Langerhans remodeling and relative endocrine-cell volume in baboons. We sequenced the amylin peptide, determined the fibrillogenic propensities, and evaluated pancreatic histology, clinical and biochemical characteristics, and endocrine cell proliferation and apoptosis in 150 baboons with different metabolic status. Amylin sequence in the baboon was 92% similar to humans and showed superimposable fibrillogenic propensities. IA severity correlated with fasting plasma glucose (FPG) (r = 0.662, P < 0.001) and HbA1c (r = 0.726, P < 0.001), as well as with free fatty acid, glucagon values, decreased homeostasis model assessment (HOMA) insulin resistance, and HOMA-B. IA severity was associated with a decreased relative beta-cell volume, and increased relative alpha-cell volume and hyperglucagonemia. These results strongly support the concept that IA and beta-cell apoptosis in concert with alpha-cell proliferation and hypertrophy are key determinants of islets of Langerhans "dysfunctional remodeling" and hyperglycemia in the baboon, a nonhuman primate model of type-2 diabetes mellitus. The most important determinants of IA were age and FPG (R(2) = 0.519, P < 0.0001), and different FPG levels were sensitive and specific to predict IA severity. Finally, a predictive model for islet amyloid severity was generated with age and FPG as required variables.


Asunto(s)
Amiloidosis/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/patología , Amiloide/metabolismo , Animales , Apoptosis , Glucemia/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Ácidos Grasos/metabolismo , Femenino , Resistencia a la Insulina , Polipéptido Amiloide de los Islotes Pancreáticos , Masculino , Papio
13.
BMC Cancer ; 11: 43, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21276246

RESUMEN

BACKGROUND: Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV) is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells. METHODS: The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors RESULTS: We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/ß)-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The essential role of IFN in restricting infection was further borne out by our finding that neutralizing IFN activity resulted in enhanced RSV infection in non-tumorigenic RWPE-1 prostate cells. CONCLUSIONS: We demonstrated that RSV is potentially a useful therapeutic tool in the treatment of androgen-sensitive and androgen-independent prostate cancer. Moreover, impaired IFN-mediated antiviral response is the likely cause of higher viral burden and resulting oncolysis of androgen-sensitive prostate cancer cells.


Asunto(s)
Viroterapia Oncolítica/métodos , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/virología , Virus Sincitiales Respiratorios/fisiología , Andrógenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Interferones/metabolismo , Interferones/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , FN-kappa B/metabolismo , Virus Oncolíticos/fisiología , Neoplasias de la Próstata/patología , Factor de Transcripción STAT1/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Am J Med Genet A ; 155A(6): 1367-73, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21567905

RESUMEN

Nonhuman primates have been a common animal model to evaluate experimentally induced malformations. Reports on spontaneous malformations are important in determining the background incidence of congenital anomalies in specific species and in evaluating experimental results. Here we report on a stillborn cynomolgus monkey (Macaca fascicularis) with multiple congenital anomalies from the colony maintained at the Southwest National Primate Research Center at the Texas Biomedical Research Institute, San Antonio, Texas. Physical findings included low birth weight, craniorachischisis, facial abnormalities, omphalocele, malrotation of the gut with areas of atresia and intussusception, a Meckel diverticulum, arthrogryposis, patent ductus arteriosus, and patent foramen ovale. The macaque had normal male external genitalia, but undescended testes. Gestational age was unknown but was estimated from measurements of the limbs and other developmental criteria. Although cytogenetic analysis was not possible due to the tissues being in an advanced state of decomposition, array Comparative Genomic Hybridization analysis using human bacterial artificial chromosome clones was successful in effectively eliminating aneuploidy or any copy number changes greater than approximately 3-5 Mb as a cause of the malformations. Further evaluation of the animal included extensive imaging of the skeletal and neural tissue defects. The animal's congenital anomalies are discussed in relation to the current hypotheses attempting to explain the frequent association of neural tube defects with other abnormalities.


Asunto(s)
Hernia Umbilical/veterinaria , Macaca fascicularis/anomalías , Macaca fascicularis/genética , Defectos del Tubo Neural/veterinaria , Animales , Hibridación Genómica Comparativa , Análisis Citogenético , Hernia Umbilical/genética , Hernia Umbilical/patología , Imagen por Resonancia Magnética , Masculino , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Mortinato/veterinaria , Microtomografía por Rayos X
15.
J Med Primatol ; 40(2): 142-55, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21226714

RESUMEN

BACKGROUND: Baboons are useful animal models for biomedical research, but the natural pathology of the baboon is not as well defined as other non-human primates. METHODS: A computer search for all morphologic diagnoses from baboon necropsies at the Southwest National Primate Research Center was performed and included all the natural deaths and animals euthanized for natural causes. RESULTS: A total of 10,883 macroscopic or microscopic morphologic diagnoses in 4297 baboons were documented and are presented by total incidence, relative incidence by sex and age-group, and mean age of occurrence. The most common diagnoses in descending order of occurrence were hemorrhage, stillborn, amyloidosis, colitis, spondylosis, and pneumonia. The systems with the most diagnoses were the digestive, urogenital, musculoskeletal, and respiratory. CONCLUSION: This extensive evaluation of the natural pathology of the baboon should be an invaluable biomedical research resource.


Asunto(s)
Enfermedades de los Monos/patología , Papio , Factores de Edad , Animales , Femenino , Masculino , Factores Sexuales
16.
Clin Colorectal Cancer ; 20(1): e61-e70, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33132009

RESUMEN

BACKGROUND: We previously showed that lifelong rapamycin treatment of short-lived ApcMin/+ mice, a model for familial adenomatous polyposis, resulted in a normal lifespan. ApcMin/+ mice develop colon polyps with a low frequency but can be converted to a colon cancer model by dextran sodium sulfate (DSS) treatments (ApcMin/+-DSS model). MATERIALS AND METHODS: We asked, what effect would pretreatment of ApcMin/+ mice with chronic rapamycin prior to DSS exposure have on survival and colonic neoplasia? RESULTS: Forty-two ppm enteric formulation of rapamycin diet exacerbated the temporary weight loss associated with DSS treatment in both sexes. However, our survival studies showed that chronic rapamycin treatment significantly extended lifespan of ApcMin/+-DSS mice (both sexes) by reductions in colon neoplasia and prevention of anemia. Rapamycin also had prophylactic effects on colon neoplasia induced by azoxymethane and DSS in C57BL/6 males and females. Immunoblot assays showed the expected inhibition of complex 1 of mechanistic or mammalian target of rapamycin (mTORC1) and effectors (S6K→rpS6 and S6K→eEF2K→eEF2) in colon by lifelong rapamycin treatments. To address the question of cell types affected by chronic enteric rapamycin treatment, immunohistochemistry analyses demonstrated that crypt cells had a prominent reduction in rpS6 phosphorylation and increase in eEF2 phosphorylation relative controls. CONCLUSION: These data indicate that enteric rapamycin prevents or delays colon neoplasia in ApcMin/+-DSS mice through inhibition of mTORC1 in the crypt cells.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Carcinogénesis/efectos de los fármacos , Neoplasias del Colon/prevención & control , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Sirolimus/farmacología , Animales , Carcinogénesis/genética , Colon/efectos de los fármacos , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Transgénicos , Sirolimus/uso terapéutico , Análisis de Supervivencia , Factores de Tiempo
17.
Geroscience ; 43(5): 2105-2118, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34240333

RESUMEN

With evolving cores, enrichment and training programs, and supported research projects, the San Antonio (SA) Nathan Shock Center has for 26 years provided critical support to investigators locally, nationally, and abroad. With its existing and growing intellectual capital, the SA Nathan Shock Center provides to local and external investigators an enhanced platform to conduct horizontally integrated (lifespan, healthspan, pathology, pharmacology) transformative research in the biology of aging, and serves as a springboard for advanced educational and training activities in aging research. The SA Nathan Shock Center consists of six cores: Administrative/Program Enrichment Core, Research Development Core, Aging Animal Models and Longevity Assessment Core, Pathology Core, Analytical Pharmacology and Drug Evaluation Core, and Integrated Physiology of Aging Core. The overarching goal of the SA Nathan Shock Center is to advance knowledge in the basic biology of aging and to identify molecular and cellular mechanisms that will facilitate the development of pharmacologic interventions and other strategies to extend healthy lifespan. In pursuit of this goal, we provide an innovative "one-stop shop" venue to accelerate transformative research in the biology of aging through our integrated research cores. Moreover, we aim to foster and promote career development of early-stage investigators in aging biology through our research development programs, to serve as a resource and partner to investigators from other Shock Centers, and to disseminate scientific knowledge and enhanced awareness about aging research. Overall, the SA Nathan Shock Center aims to be a leader in research that advances our understanding of the biology of aging and development of approaches to improve longevity and healthy aging.


Asunto(s)
Gerociencia , Envejecimiento Saludable , Envejecimiento , Animales , Longevidad
18.
Aging Pathobiol Ther ; 2(1): 20-31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35356005

RESUMEN

Objective: In this study, the effects of overexpression of thioredoxin 2 (Trx2) on aging and age-related diseases were examined using Trx2 transgenic mice [Tg(TXN2]+/0]. Because our previous studies demonstrated that thioredoxin (Trx) overexpression in the cytosol (Trx1) did not extend maximum lifespan, this study was conducted to test if increased Trx2 expression in mitochondria shows beneficial effects on aging and age-related pathology. Methods: Trx2 transgenic mice were generated using a fragment of the human genome containing the TXN2 gene. Effects of Trx2 overexpression on survival, age-related pathology, oxidative stress, and redox-sensitive signaling pathways were examined in male Tg(TXN2)+/0 mice. Results: Trx2 levels were significantly higher (approximately 1.6- to 5-fold) in all of the tissues we examined in Tg(TXN2)+/0 mice compared to wild-type (WT) littermates, and the expression levels were maintained during aging (up to 22-24 months old). Trx2 overexpression did not alter the levels of Trx1, glutaredoxin, glutathione, or other major antioxidant enzymes. Overexpression of Trx2 was associated with reduced reactive oxygen species (ROS) production from mitochondria and lower isoprostane levels compared to WT mice. When we conducted the survival study, male Tg(TXN2)+/0 mice showed a slight extension (approximately 8-9%] of mean, median, and 10th percentile lifespans; however, the survival curve was not significantly different from WT mice. Cross-sectional pathological analysis (22-24 months old) showed that Tg(TXN2)+/0 mice had a slightly higher severity of lymphoma; however, tumor burden, disease burden, and severity of glomerulonephritis and inflammation were similar to WT mice. Trx2 overexpression was also associated with higher c-Jun and c-Fos levels; however, mTOR activity and levels of NFκB p65 and p50 were similar to WT littermates. Conclusions: Our findings suggest that the increased levels of Trx2 in mitochondria over the lifespan in Tg(TXN2)+/0 mice showed a slight life-extending effect, reduced ROS production from mitochondria and oxidative damage to lipids, but showed no significant effects on aging and age-related diseases.

19.
Aging Pathobiol Ther ; 2(3): 126-133, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35493763

RESUMEN

Our laboratory has conducted the first systematic survival studies to examine the biological effects of the antioxidant protein thioredoxin (Trx) on aging and age-related pathology. Our studies with C57BL/6 mice overexpressing Trx1 [Tg(act-TRX1)+/0 and Tg(TXN)+/0) demonstrated a slight extension in early lifespan compared to wild-type (WT) mice; however, no significant effects were observed in the later part of life. Overexpression of Trx2 in male C57BL/6 mice [Tg(TXN2)+/0] demonstrated a slightly extended lifespan compared to WT mice. The pathology results from two lines of Trx1 transgenic mice showed a slightly higher incidence of age-related neoplastic diseases compared to WT mice, and a slight increase in the severity of lymphoma, a major neoplastic disease, was observed in Trx2 transgenic mice. Together these studies indicate that Trx overexpression in one compartment of the cell (cytosol or mitochondria alone) has marginal beneficial effects on lifespan. On the other hand, down-regulation of Trx in either the cytosol (Trx1KO) or mitochondria (Trx2KO) showed no significant changes in lifespan compared to WT mice, despite several changes in pathophysiology of these knockout mice. When we examined the synergetic effects of overexpressing Trx1 and Trx2, TXNTg x TXN2Tg mice showed a significantly shorter lifespan with accelerated cancer development compared to WT mice. These results suggest that synergetic effects of Trx overexpression in both the cytosol and mitochondria on aging are deleterious and the development of age-related cancer is accelerated. On the other hand, we have recently found that down-regulation of Trx in both the cytosol and mitochondria in Trx1KO x Trx2KO mice has beneficial effects on aging. The results generated from our lab along with our ongoing study using Trx1KO x Trx2KO mice could elucidate the key pathways (i.e., apoptosis and autophagy) that prevent accumulation of damaged cells and genomic instability leading to reduced cancer formation.

20.
J Cell Mol Med ; 13(8B): 1896-1906, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20187303

RESUMEN

Bone marrow stem cells (BMSCs) are mobilized in response to ischemic attacks, e.g. myocardial infarction, to repair the damage, or by cytokines, e.g. granulocyte colony-stimulating factor (G-CSF), which is used to harvest BMSCs for autologous transplantation. In order to optimize BMSC mobilization strategy for cardiovascular repair, we investigated whether BMSCs mobilized by G-CSF share the same subtype profile as that by ischemia in a non-human primate model. We subjected five baboons to subcutaneous G-CSF injection and five baboons to femoral artery ligation. Blood BMSCs were measured by surface antigens; functional differentiation to endothelial cells (ECs) was assessed by colony-forming capacity, expression of mature EC antigens and tube-like formation. The number of circulating CD34+/CD45RA- cells spiked on day 3 post-stimulation in both groups. While the number of CD34+ cells released by artery ligation was 2-fold lower by comparison with the number released by G-CSF administration, significantly more CD133+/KDR+/CXCR4+/CD31+ cells were detected in the baboons that underwent artery ligation. After culture in endothelial growth medium, mononuclear cells from baboons with artery ligation formed more EC colonies and more capillary-like tubes (P < 0.05), expressed higher vWF and phagocytosed more Dil-Ac-LDL (P < 0.05). While G-CSF and artery ligation can mobilize BMSCs capable of differentiating into ECs, BMSCs mobilized by the artery ligation simulating in vivo ischemic attacks have higher potential for vascular differentiation. Our findings demonstrate that different mobilization forces release different sets of BMSCs that may have different capacity for cardiovascular differentiation.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Animales , Arterias/patología , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Células Madre Hematopoyéticas/citología , Papio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA