Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 108(8): 3141-6, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21300897

RESUMEN

Hundreds of mammalian nuclear and cytoplasmic proteins are reversibly glycosylated by O-linked ß-N-acetylglucosamine (O-GlcNAc) to regulate their function, localization, and stability. Despite its broad functional significance, the dynamic and posttranslational nature of O-GlcNAc signaling makes it challenging to study using traditional molecular and cell biological techniques alone. Here, we report that metabolic cross-talk between the N-acetylgalactosamine salvage and O-GlcNAcylation pathways can be exploited for the tagging and identification of O-GlcNAcylated proteins. We found that N-azidoacetylgalactosamine (GalNAz) is converted by endogenous mammalian biosynthetic enzymes to UDP-GalNAz and then epimerized to UDP-N-azidoacetylglucosamine (GlcNAz). O-GlcNAc transferase accepts UDP-GlcNAz as a nucleotide-sugar donor, appending an azidosugar onto its native substrates, which can then be detected by covalent labeling using azide-reactive chemical probes. In a proof-of-principle proteomics experiment, we used metabolic GalNAz labeling of human cells and a bioorthogonal chemical probe to affinity-purify and identify numerous O-GlcNAcylated proteins. Our work provides a blueprint for a wide variety of future chemical approaches to identify, visualize, and characterize dynamic O-GlcNAc signaling.


Asunto(s)
Acetilgalactosamina/metabolismo , Acetilglucosamina/metabolismo , Marcadores de Afinidad , Redes y Vías Metabólicas , Receptor Cross-Talk , Línea Celular , Cromatografía de Afinidad , Glicosilación , Humanos , Métodos , Procesamiento Proteico-Postraduccional
2.
Bioorg Med Chem Lett ; 21(17): 4945-50, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21798741

RESUMEN

Most clinically approved biomarkers of cancer are glycoproteins, and those residing on the cell surface are of particular interest in biotherapeutics. We report a method for selective labeling, affinity enrichment, and identification of cell-surface glycoproteins. PC-3 cells and primary human prostate cancer tissue were treated with peracetylated N-azidoacetylgalactosamine, resulting in metabolic labeling of cell surface glycans with the azidosugar. We used mass spectrometry to identify over 70 cell surface glycoproteins and biochemically validated CD146 and integrin beta-4, both of which are known to promote metastatic behavior. These results establish cell-surface glycoproteomics as an effective technique for discovery of cancer biomarkers.


Asunto(s)
Carbohidratos/análisis , Neoplasias de la Próstata/metabolismo , Proteoma , Línea Celular Tumoral , Electroforesis en Gel de Poliacrilamida , Humanos , Masculino , Espectrometría de Masas , Neoplasias de la Próstata/química , Neoplasias de la Próstata/patología
3.
Nature ; 451(7180): 768, 2008 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-18272995
4.
J Am Chem Soc ; 128(37): 12078-9, 2006 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16967952

RESUMEN

Fucosylated glycoproteins are involved in many cell-cell recognition events and are markers of embryonic and malignant tissue. Here we report a method for rapid profiling of fucosylated glycoproteins from human cells using 6-azido fucose as a metabolic label.


Asunto(s)
Fucosa/análogos & derivados , Fucosa/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Azidas/química , Azidas/metabolismo , Citometría de Flujo , Fucosa/química , Humanos , Células Jurkat , Modelos Moleculares , Polisacáridos/química , Polisacáridos/metabolismo
5.
Mol Cell ; 21(1): 109-22, 2006 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-16387658

RESUMEN

Sulfate assimilation is a critical component of both primary and secondary metabolism. An essential step in this pathway is the activation of sulfate through adenylation by the enzyme ATP sulfurylase (ATPS), forming adenosine 5'-phosphosulfate (APS). Proteobacterial ATPS overcomes this energetically unfavorable reaction by associating with a regulatory G protein, coupling the energy of GTP hydrolysis to APS formation. To discover the molecular basis of this unusual role for a G protein, we biochemically characterized and solved the X-ray crystal structure of a complex between Pseudomonas syringae ATPS (CysD) and its associated regulatory G protein (CysN). The structure of CysN*D shows the two proteins in tight association; however, the nucleotides bound to each subunit are spatially segregated. We provide evidence that conserved switch motifs in the G domain of CysN allosterically mediate interactions between the nucleotide binding sites. This structure suggests a molecular mechanism by which conserved G domain architecture is used to energetically link GTP turnover to the production of an essential metabolite.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al GTP/metabolismo , Estructura Terciaria de Proteína , Pseudomonas syringae/enzimología , Sulfato Adenililtransferasa/química , Sulfatos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Dimerización , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Pseudomonas syringae/genética , Alineación de Secuencia , Sulfato Adenililtransferasa/genética , Sulfato Adenililtransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA