Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 123(16): 9915-9939, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37470246

RESUMEN

Environmental concerns over waste plastics' effect on the environment are leading to the creation of biodegradable plastics. Biodegradable plastics may serve as a promising approach to manage the issue of environmental accumulation of plastic waste in the ocean and soil. Biodegradable plastics are the type of polymers that can be degraded by microorganisms into small molecules (e.g., H2O, CO2, and CH4). However, there are misconceptions surrounding biodegradable plastics. For example, the term "biodegradable" on product labeling can be misconstrued by the public to imply that the product will degrade under any environmental conditions. Such misleading information leads to consumer encouragement of excessive consumption of certain goods and increased littering of products labeled as "biodegradable". This review not only provides a comprehensive overview of the state-of-the-art biodegradable plastics but also clarifies the definitions and various terms associated with biodegradable plastics, including oxo-degradable plastics, enzyme-mediated plastics, and biodegradation agents. Analytical techniques and standard test methods to evaluate the biodegradability of polymeric materials in alignment with international standards are summarized. The review summarizes the properties and industrial applications of previously developed biodegradable plastics and then discusses how biomass-derived monomers can create new types of biodegradable polymers by utilizing their unique chemical properties from oxygen-containing functional groups. The terminology and methodologies covered in the paper provide a perspective on directions for the design of new biodegradable polymers that possess not only advanced performance for practical applications but also environmental benefits.


Asunto(s)
Plásticos Biodegradables , Plásticos Biodegradables/química , Polímeros/química , Biodegradación Ambiental , Biomasa
2.
Proc Natl Acad Sci U S A ; 117(7): 3446-3450, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32005709

RESUMEN

We show that platinum displays a self-adjusting surface that is active for the hydrogenation of acetone over a wide range of reaction conditions. Reaction kinetics measurements under steady-state and transient conditions at temperatures near 350 K, electronic structure calculations employing density-functional theory, and microkinetic modeling were employed to study this behavior over supported platinum catalysts. The importance of surface coverage effects was highlighted by evaluating the transient response of isopropanol formation following either removal of the reactant ketone from the feed, or its substitution with a similarly structured species. The extent to which adsorbed intermediates that lead to the formation of isopropanol were removed from the catalytic surface was observed to be higher following ketone substitution in comparison to its removal, indicating that surface species leading to isopropanol become more strongly adsorbed on the surface as the coverage decreases during the desorption experiment. This phenomenon occurs as a result of adsorbate-adsorbate repulsive interactions on the catalyst surface which adjust with respect to the reaction conditions. Reaction kinetics parameters obtained experimentally were in agreement with those predicted by microkinetic modeling when the binding energies, activation energies, and entropies of adsorbed species and transition states were expressed as a function of surface coverage of the most abundant surface intermediate (MASI, C3H6OH*). It is important that these effects of surface coverage be incorporated dynamically in the microkinetic model (e.g., using the Bragg-Williams approximation) to describe the experimental data over a wide range of acetone partial pressures.

3.
Chem Soc Rev ; 47(4): 1351-1390, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29297525

RESUMEN

A wide variety of commodity chemicals can be produced from the catalytic oxidation of carbohydrates or carbohydrate derived molecules including formic acid, acetic acid, glycolic acid, gluconic acid, glucaric acid, malonic acid, oxalic acid, 2,5-diformylfuran (DFF), 5-hydroxymethyl-2-furancarboxylic acid (HFCA), 5-formyl-2-furancarboxylic acid (FFCA), and 2,5-furandicarboxylic acid (FDCA). This review will highlight the recent research progress in the development of new routes for the production of organic acids and furan compounds via catalytic oxidation reactions. Particular attention will be paid to these one-pot reactions with the requirements of an acidic site and a metal site. For the one-pot transformation of cellobiose or lignocellulose into gluconic acid, these reactions were performed via a one-step strategy using a single catalyst containing an acidic site and a metal site. However, a two-step strategy was adopted for the oxidative transformation of carbohydrates into DFF or FDCA in order to avoid the oxidation of the carbohydrates. The first step was performed for the dehydration of carbohydrates into 5-hydroxylmethylfuran (HMF) in the presence of an acid catalyst, and the second step was performed for the oxidation of HMF into DFF or FDCA with a metal catalyst.

4.
J Environ Manage ; 227: 329-334, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30199729

RESUMEN

A methodology for the synthesis of gasoline-range fuels from carbon neutral resources is introduced. Sorbitol, a sugar-based compound, was employed as a raw material because the compound is readily obtained from cellulose. Gasoline-range hydrocarbons were produced via hydrodeoxygenation (HDO) on zirconium phosphate-supported Pd-bimetallic (Pt-Pd, Ru-Pd, Ni-Pd, Fe-Pd, Co-Pd, W-Pd) catalysts. Among the tested catalysts, the bimetallic W-Pd/ZrP catalyst exhibited the highest yield of gasoline products, peaking at ∼70%. However, with the bimetallic Fe-Pd and Co-Pd catalysts, high-octane gasoline products were made (research octane number (RON) of the products was higher than 100). The Fe-Pd catalyst also showed the highest initial activity for the HDO of sorbitol. This study demonstrates that HDO in the Pd-system is a promising option to produce high-quality gasoline-range hydrocarbons from lignocellulosic biomass.


Asunto(s)
Gasolina , Paladio , Catálisis , Octanos , Sorbitol
5.
Faraday Discuss ; 202: 247-267, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28678237

RESUMEN

Catalytic strategies for the synthesis of 1,5-pentanediol (PDO) with 69% yield from hemicellulose and the synthesis of 1,6-hexanediol (HDO) with 28% yield from cellulose are presented. Fractionation of lignocellulosic biomass (white birch wood chips) in gamma-valerolactone (GVL)/H2O generates a pure cellulose solid and a liquid stream containing hemicellulose and lignin, which is further dehydrated to furfural with 85% yield. Furfural is converted to PDO with sequential dehydration, hydration, ring-opening tautomerization, and hydrogenation reactions. Acid-catalyzed cellulose dehydration in tetrahydrofuran (THF)/H2O produces a mixture of levoglucosenone (LGO) and 5-hydroxymethylfurfural (HMF), which are converted with hydrogen to tetrahydrofuran-dimethanol (THFDM). HDO is then obtained from hydrogenolysis of THFDM. Techno-economic analysis demonstrates that this approach can produce HDO and PDO at a minimum selling price of $4090 per ton.


Asunto(s)
Glicoles/síntesis química , Lignina/química , Pentanos/síntesis química , Biomasa , Catálisis , Deshidratación , Glicoles/química , Concentración de Iones de Hidrógeno , Pentanos/química
6.
J Am Chem Soc ; 137(32): 10317-25, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26225538

RESUMEN

We show that MoO(x)-promoted Au/SiO2 catalysts are active for reverse water-gas shift (RWGS) at 573 K. Results from reactivity measurements, CO FTIR studies, Raman spectroscopy, and X-ray absorption spectroscopy (XAS) indicate that the deposition of Mo onto Au nanoparticles occurs preferentially on under-coordinated Au sites, forming Au/MoO(x) interfacial sites active for reverse water-gas shift (RWGS). Au and AuMo sites are quantified from FTIR spectra of adsorbed CO collected at subambient temperatures (e.g., 150-270 K). Bands at 2111 and 2122 cm(-1) are attributed to CO adsorbed on under-coordinated Au(0) and Au(δ+) species, respectively. Clausius-Clapeyron analysis of FTIR data yields a heat of CO adsorption (ΔH(ads)) of -31 kJ mol(-1) for Au(0) and -64 kJ mol(-1) for Au(δ+) at 33% surface coverage. Correlations of RWGS reactivity with changes in FTIR spectra for samples containing different amounts of Mo indicate that interfacial sites are an order of magnitude more active than Au sites for RWGS. Raman spectra of Mo/SiO2 show a feature at 975 cm(-1), attributed to a dioxo (O═)2Mo(-O-Si)2 species not observed in spectra of AuMo/SiO2 catalysts, indicating preferential deposition of Mo on Au. XAS results indicate that Mo is in a +6 oxidation state, and therefore Au and Mo exist as a metal-metal oxide combination. Catalyst calcination increases the quantity of under-coordinated Au sites, increasing RWGS activity. This strategy for catalyst synthesis and characterization enables quantification of Au active sites and interfacial sites, and this approach may be extended to describe reactivity changes observed in other reactions on supported gold catalysts.

7.
Proc Natl Acad Sci U S A ; 109(10): 4014-9, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22355123

RESUMEN

Almost one-quarter of the world's population has basic energy needs that are not being met. Efforts to increase renewable energy resources in developing countries where per capita energy availability is low are needed. Herein, we examine integrated dual use farming for sustained food security and agro-bioenergy development. Many nonedible crop residues are used for animal feed or reincorporated into the soil to maintain fertility. By contrast, drupe endocarp biomass represents a high-lignin feedstock that is a waste stream from food crops, such as coconut (Cocos nucifera) shell, which is nonedible, not of use for livestock feed, and not reintegrated into soil in an agricultural setting. Because of high-lignin content, endocarp biomass has optimal energy-to-weight returns, applicable to small-scale gasification for bioelectricity. Using spatial datasets for 12 principal drupe commodity groups that have notable endocarp byproduct, we examine both their potential energy contribution by decentralized gasification and relationship to regions of energy poverty. Globally, between 24 million and 31 million tons of drupe endocarp biomass is available per year, primarily driven by coconut production. Endocarp biomass used in small-scale decentralized gasification systems (15-40% efficiency) could contribute to the total energy requirement of several countries, the highest being Sri Lanka (8-30%) followed by Philippines (7-25%), Indonesia (4-13%), and India (1-3%). While representing a modest gain in global energy resources, mitigating energy poverty via decentralized renewable energy sources is proposed for rural communities in developing countries, where the greatest disparity between societal allowances exist.


Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales/métodos , Productos Agrícolas/química , Lignina/química , Asia , Biomasa , Cocos , Países en Desarrollo , Fuentes Generadoras de Energía , Geografía , Eliminación de Residuos , Energía Renovable , Suelo
8.
J Public Health Manag Pract ; 20(3): 330-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24667195

RESUMEN

The mark of an "academic health department" includes shared activity by academic and practice partners sustained over time. Despite a long history of productive interactivity, the Pennsylvania Department of Health and the University of Pittsburgh's Graduate School of Public Health often faced administrative hurdles in contracting for projects of mutual interest. Seeking to overcome these hurdles, the Commonwealth of Pennsylvania and the University of Pittsburgh's Graduate School of Public Health negotiated a Master Agreement on the basis of statutes designating both as "public procurement units." This provided a template for project specifications, standard financial terms, and a contracting process. Since taking effect, the Master Agreement has supported projects in policy development, capacity building, workforce development, program evaluation, data analysis, and program planning. This experience suggests an approach potentially useful for other states and localities seeking to solidify academic health department partnerships either envisioned for the future or already in place.


Asunto(s)
Práctica de Salud Pública/legislación & jurisprudencia , Escuelas de Salud Pública/organización & administración , Presupuestos , Educación en Salud Pública Profesional/legislación & jurisprudencia , Educación en Salud Pública Profesional/organización & administración , Financiación Gubernamental , Humanos , Relaciones Interinstitucionales , Pennsylvania , Escuelas de Salud Pública/legislación & jurisprudencia , Gobierno Estatal
9.
ACS Sustain Chem Eng ; 12(11): 4619-4630, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38516401

RESUMEN

Solvent-based recycling of plastic waste is a promising approach for cleaning polymer chains without breaking them. However, the time required to actually dissolve the polymer in a lab environment can take hours. Different factors play a role in polymer dissolution, including temperature, turbulence, and solvent properties. This work provides insights into bottlenecks and opportunities to increase the dissolution rate of polystyrene in solvents. The paper starts with a broad solvent screening in which the dissolution times are compared. Based on the experimental results, a multiple regression model is constructed, which shows that within several solvent properties, the viscosity of the solvent is the major contributor to the dissolution time, followed by the hydrogen, polar, and dispersion bonding (solubility) parameters. These results also indicate that cyclohexene, 2-pentanone, ethylbenzene, and methyl ethyl ketone are solvents that allow fast dissolution. Next, the dissolution kinetics of polystyrene in cyclohexene in a lab-scale reactor and a baffled reactor are investigated. The effects of temperature, particle size, impeller speed, and impeller type were studied. The results show that increased turbulence in a baffled reactor can decrease the dissolution time from 40 to 7 min compared to a lab-scale reactor, indicating the importance of a proper reactor design. The application of a first-order kinetic model confirms that dissolution in a baffled reactor is at least 5-fold faster than that in a lab-scale reactor. Finally, the dissolution kinetics of a real waste sample reveal that, in optimized conditions, full dissolution occurs after 5 min.

10.
Green Chem ; 25(5): 1809-1822, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37810198

RESUMEN

The engineered structures and active sites of enzyme catalysts give rise to high catalytic activity and selectivity toward desired reactions. We have employed a biomass-derived difuran compound to append N-substituted maleimides with amino acid (glutamic acid) substitution by Diels-Alder reaction to mimic the chemical functional groups that comprise the active site channels in enzyme catalysts. The difunctionality of the biomass-derived difuran allows production of Diels-Alder adducts by appending two amino acid moieties to form a difunctional organocatalyst. The catalytic activity of the organocatalyst can be improved by immobilizing the organocatalyst on solid supporting materials. Accordingly, the structures of these immobilized organocatalysts can be engineered to mimic enzymatic active sites and to control the interaction between reactants, products, and transition states of catalytic reactions. Lactose hydrolysis was carried out to provide an example of industrial application of this approach to design and fabricate new supported organocatalysts as artificial enzymes.

11.
Science ; 381(6658): 660-666, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561862

RESUMEN

Waste plastics are an abundant feedstock for the production of renewable chemicals. Pyrolysis of waste plastics produces pyrolysis oils with high concentrations of olefins (>50 weight %). The traditional petrochemical industry uses several energy-intensive steps to produce olefins from fossil feedstocks such as naphtha, natural gas, and crude oil. In this work, we demonstrate that pyrolysis oil can be used to produce aldehydes through hydroformylation, taking advantage of the olefin functionality. These aldehydes can then be reduced to mono- and dialcohols, oxidized to mono- and dicarboxylic acids, or aminated to mono- and diamines by using homogeneous and heterogeneous catalysis. This route produces high-value oxygenated chemicals from low-value postconsumer recycled polyethylene. We project that the chemicals produced by this route could lower greenhouse gas emissions ~60% compared with their production through petroleum feedstocks.

12.
Waste Manag ; 166: 368-376, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37210960

RESUMEN

Material Recovery Facilities (MRFs) are crucial players in achieving a circular economy. MRFs receive complex waste streams and separate valuable recyclables from these mixtures. This study conducts techno-economic analysis (TEA) to estimate the net present value (NPV) and life cycle assessment (LCA) to estimate different environmental impacts of a commercial scale standalone, single-stream MRF to assess the economic feasibility and environmental impacts of recovering valuable recyclables from an MRF processing 120,000 tonnes per year (t/y). The TEA employs a discounted cash flow rate of return (DCFROR) analysis over a 20-year facility lifetime, along with a sensitivity analysis on the impact of different operating and economic parameters. Results show that the total fixed cost of building the MRF facility is $23 MM, and the operating cost is $45.48/tonne. The NPV of the MRF can vary from $3.57 MM to $60 MM, while 100-year global warming potential can range from 5.98 to 8.53 kg carbon dioxide equivalents (CO2-eq) per tonne of MSW. We have also found that MSW composition (arising from regional effects) significantly impacts costs, 100-year global warming potential, and other impact categories such as acidification potential, eutrophication potential, ecotoxicity, ozone depletion, photochemical oxidation, carcinogenic effects, and non-carcinogenic effects. Sensitivity and uncertainty analysis indicate that waste composition and market prices significantly impact the profitability of the MRF, and the waste composition mostly impacts global warming potential. Our analysis also indicates that facility capacity, fixed capital cost, and waste tipping fees are vital parameters that affect the economic viability of MRF operations.


Asunto(s)
Eliminación de Residuos , Animales , Ambiente , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Incertidumbre , Estados Unidos
13.
Green Chem ; 25(14): 5416-5427, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-38223356

RESUMEN

A biomass-derived difuran compound, denoted as HAH (HMF-Acetone-HMF), synthesized by aldol-condensation of 5-hydroxyfurfural (HMF) and acetone, can be partially hydrogenated to provide an electron-rich difuran compound (PHAH) for Diels-Alder reactions with maleimide derivatives. The nitrogen (N) site in the maleimide can be substituted by imidation with amine-containing compounds to control the hydrophobicity of the maleimide moiety in adducts of furans and maleimide by Diels-Alder reaction, denoted as norcantharimides (Diels-Alder adducts). The structural effects on the toxicity of various biomass-derived small molecules synthesized in this manner to regulate biological processes, defined as low molecular weight (≤ 1000 g/mol) organic compounds, were investigated against diverse microbial and mammalian cell types. The biological toxicity increased when hydrophobic N-substitutions and C=C bonds were introduced into the molecular structure. Among the synthesized norcantharamide derivatives, some compounds demonstrated pH-dependent toxicities against specific cell types. Reaction kinetics analyses of the norcantharimides in biological conditions suggest that this pH-dependent toxicity of norcantharimides could arise from retro Diels-Alder reactions in the presence of a Brϕnsted acid that catalyzes the release of an N-substituted maleimide, which has higher toxicity against fungal cells than the toxicity of the Diels-Alder adduct. These synthetic approaches can be used to design biologically-active small molecules that exhibit selective toxicity against various cell types (e.g., fungal, cancer cells) and provide a sustainable platform for production of prodrugs that could actively or passively affect the viability of infectious cells.

14.
J Am Chem Soc ; 134(36): 14958-72, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22889121

RESUMEN

We modeled nascent decomposition processes in cellulose pyrolysis at 327 and 600 °C using Car-Parrinello molecular dynamics (CPMD) simulations with rare events accelerated with the metadynamics method. We used a simulation cell comprised of two unit cells of cellulose Iß periodically repeated in three dimensions to mimic the solid cellulose. To obtain initial conditions at reasonable densities, we extracted coordinates from larger classical NPT simulations at the target temperatures. CPMD-metadynamics implemented with various sets of collective variables, such as coordination numbers of the glycosidic oxygen, yielded a variety of chemical reactions such as depolymerization, fragmentation, ring opening, and ring contraction. These reactions yielded precursors to levoglucosan (LGA)-the major product of pyrolysis-and also to minor products such as 5-hydroxy-methylfurfural (HMF) and formic acid. At 327 °C, we found that depolymerization via ring contraction of the glucopyranose ring to the glucofuranose ring occurs with the lowest free-energy barrier (20 kcal/mol). We suggest that this process is key for formation of liquid intermediate cellulose, observed experimentally above 260 °C. At 600 °C, we found that a precursor to LGA (pre-LGA) forms with a free-energy barrier of 36 kcal/mol via an intermediate/transition state stabilized by anchimeric assistance and hydrogen bonding. Conformational freedom provided by expansion of the cellulose matrix at 600 °C was found to be crucial for formation of pre-LGA. We performed several comparison calculations to gauge the accuracy of CPMD-metadynamics barriers with respect to basis set and level of theory. We found that free-energy barriers at 600 °C are in the order pre-LGA < pre-HMF < formic acid, explaining why LGA is the kinetically favored product of fast cellulose pyrolysis.


Asunto(s)
Celulosa/química , Teoría Cuántica , Temperatura , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular
20.
Angew Chem Int Ed Engl ; 51(44): 11097-100, 2012 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-23038098

RESUMEN

Pores for thought: Chemical liquid deposition of silica onto ZSM-5 catalysts led to smaller pore openings that resulted in >90% selectivity for p-xylene over the other xylenes in the catalytic fast pyrolysis of furan and 2-methylfuran (see scheme). The p-xylene selectivity increased from 51% with gallium spray-dried ZSM-5 to 72% with a pore-mouth-modified catalyst in the pyrolysis of pine wood.


Asunto(s)
Biomasa , Xilenos/síntesis química , Zeolitas/química , Catálisis , Estructura Molecular , Oxidación-Reducción , Xilenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA