Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38750824

RESUMEN

BACKGROUND: TRPM4 is a broadly expressed, calcium-activated, monovalent cation channel that regulates immune cell function in mice and cell lines. Clinically, however, partial loss- or gain-of-function mutations in TRPM4 lead to arrhythmia and heart disease, with no documentation of immunologic disorders. OBJECTIVE: To characterize functional cellular mechanisms underlying the immune dysregulation phenotype in a proband with a mutated TRPM4 gene. METHODS: We employed a combination of biochemical, cell biological, imaging, omics analyses, flow cytometry, and gene editing approaches. RESULTS: We report the first human cases to our knowledge with complete loss of the TRPM4 channel, leading to immune dysregulation with frequent bacterial and fungal infections. Single-cell and bulk RNA sequencing point to altered expression of genes affecting cell migration, specifically in monocytes. Inhibition of TRPM4 in T cells and the THP-1 monocyte cell line reduces migration. More importantly, primary T cells and monocytes from TRPM4 patients migrate poorly. Finally, CRISPR knockout of TRPM4 in THP-1 cells greatly reduces their migration potential. CONCLUSION: Our results demonstrate that TRPM4 plays a critical role in regulating immune cell migration, leading to increased susceptibility to infections.

2.
J Allergy Clin Immunol ; 151(3): 783-790.e5, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36462956

RESUMEN

BACKGROUND: Toll-like receptors (TLRs) mediate functions for host defense and inflammatory responses. TLR4 recognizes LPS, a component of gram-negative bacteria as well as host-derived endogenous ligands such as S100A8 and S100A9 proteins. OBJECTIVE: We sought to report phenotype and cellular function of individuals with complete TLR4 deficiency. METHODS: We performed genome sequencing and investigated exome and genome sequencing databases. Cellular responses were studied on primary monocytes, macrophages, and neutrophils, as well as cell lines using flow cytometry, reporter, and cytokine assays. RESULTS: We identified 2 individuals in a family of Qatari origin carrying a homozygous stop codon variant p.Q188X in TLR4 presenting with a variable phenotype (asymptomatic and inflammatory bowel disease consistent with severe perianal Crohn disease). A third individual with homozygous p.Y794X was identified in a population database. In contrast to hypomorphic polymorphisms p.D299G and p.T399I, the variants p.Q188X and p.Y794X completely abrogated LPS-induced cytokine responses whereas TLR2 response was normal. TLR4 deficiency causes a neutrophil CD62L shedding defect, whereas antimicrobial activity toward intracellular Salmonella was intact. CONCLUSIONS: Biallelic TLR4 deficiency in humans causes an inborn error of immunity in responding to LPS. This complements the spectrum of known primary immunodeficiencies, in particular myeloid differentiation primary response 88 (MYD88) or the IL-1 receptor-associated kinase 4 (IRAK4) deficiency that are downstream of TLR4 and TLR2 signaling.


Asunto(s)
Receptor Toll-Like 2 , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/genética , Receptor Toll-Like 2/genética , Lipopolisacáridos/farmacología , Receptores Toll-Like/metabolismo , Citocinas/metabolismo , Factor 88 de Diferenciación Mieloide/genética
3.
J Physiol ; 600(22): 4827-4848, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36181482

RESUMEN

Loss of function mutations in store-operated Ca2+ entry (SOCE) are associated with severe paediatric disorders in humans, including combined immunodeficiency, anaemia, thrombocytopenia, anhidrosis and muscle hypotonia. Given its central role in immune cell activation, SOCE has been a therapeutic target for autoimmune and inflammatory diseases. Treatment for such chronic diseases would require prolonged SOCE inhibition. It is, however, unclear whether chronic SOCE inhibition is viable therapeutically. Here we address this issue using a novel genetic mouse model (SOCE hypomorph) with deficient SOCE, nuclear factor of activated T cells activation, and T cell cytokine production. SOCE hypomorph mice develop and reproduce normally and do not display muscle weakness or overt anhidrosis. They do, however, develop cardiovascular complications, including hypertension and tachycardia, which we show are due to increased sympathetic autonomic nervous system activity and not cardiac or vascular smooth muscle autonomous defects. These results assert that chronic SOCE inhibition is viable therapeutically if the cardiovascular complications can be managed effectively clinically. They further establish the SOCE hypomorph line as a genetic model to define the therapeutic window of SOCE inhibition and dissect toxicities associated with chronic SOCE inhibition in a tissue-specific fashion. KEY POINTS: A floxed stromal interaction molecule 1 (STIM1) hypomorph mouse model was generated with significant reduction in Ca2+ influx through store-operated Ca2+ entry (SOCE), resulting in defective nuclear translocation of nuclear factor of activated T cells, cytokine production and inflammatory response. The hypomorph mice are viable and fertile, with no overt defects. Decreased SOCE in the hypomorph mice is due to poor translocation of the mutant STIM1 to endoplasmic reticulum-plasma membrane contact sites resulting in fewer STIM1 puncta. Hypomorph mice have similar susceptibility to controls to develop diabetes but exhibit tachycardia and hypertension. The hypertension is not due to increased vascular smooth muscle contractility or vascular remodelling. The tachycardia is not due to heart-specific defects but rather seems to be due to increased circulating catecholamines in the hypomorph. Therefore, long term SOCE inhibition is viable if the cardiovascular defects can be managed clinically.


Asunto(s)
Hipertensión , Hipohidrosis , Animales , Niño , Humanos , Ratones , Calcio/metabolismo , Señalización del Calcio , Citocinas/metabolismo , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Sistema Cardiovascular/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(21): 10392-10401, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31064875

RESUMEN

Store-operated Ca2+ entry (SOCE), mediated by the endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) and the plasma membrane (PM) channel Orai1, is inhibited during mitosis. STIM1 phosphorylation has been suggested to mediate this inhibition, but it is unclear whether additional pathways are involved. Here, we demonstrate using various approaches, including a nonphosphorylatable STIM1 knock-in mouse, that STIM1 phosphorylation is not required for SOCE inhibition in mitosis. Rather, multiple pathways converge to inhibit Ca2+ influx in mitosis. STIM1 interacts with the cochaperone BAG3 and localizes to autophagosomes in mitosis, and STIM1 protein levels are reduced. The density of ER-PM contact sites (CSs) is also dramatically reduced in mitosis, thus physically preventing STIM1 and Orai1 from interacting to activate SOCE. Our findings provide insights into ER-PM CS remodeling during mitosis and a mechanistic explanation of the inhibition of Ca2+ influx that is required for cell cycle progression.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Mitosis/fisiología , Proteínas de Neoplasias/metabolismo , Fosforilación/fisiología , Molécula de Interacción Estromal 1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Ciclo Celular/fisiología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Ratones , Proteína ORAI1/metabolismo
5.
J Cell Physiol ; 233(4): 3164-3175, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28816348

RESUMEN

The G2-M transition of the cell cycle requires the activation of members of the Cdc25 dual specificity phosphatase family. Using Xenopus oocyte maturation as a model system, we have previously shown that chelation of transition metals blocks meiosis progression by inhibiting Cdc25C activation. Here, using approaches that allow for the isolation of very pure and active recombinant Cdc25C, we show that Cdc25C does not bind zinc as previously reported. Additionally, we show that mutants in the disordered C-terminal end of Cdc25C are poor initiators of meiosis, likely due to their inability to localize to the proper sub-cellular location. We further demonstrate that the transition metal chelator, TPEN, acts on or upstream of polo-like kinases in the oocyte to block meiosis progression. Together our results provide novel insights into Cdc25C structure-function relationship and the role of transition metals in regulating meiosis.


Asunto(s)
Meiosis/efectos de los fármacos , Oocitos/citología , Oocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Elementos de Transición/farmacología , Secuencia de Aminoácidos , Animales , Diferenciación Celular/efectos de los fármacos , Codón/genética , Etilenodiaminas/farmacología , Proteínas Mutantes/metabolismo , Oocitos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Xenopus , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/aislamiento & purificación , Proteínas de Xenopus/metabolismo , Fosfatasas cdc25/química , Fosfatasas cdc25/genética , Fosfatasas cdc25/aislamiento & purificación , Fosfatasas cdc25/metabolismo
6.
J Cell Sci ; 129(13): 2548-58, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27173493

RESUMEN

Ca(2+)-activated Cl(-) channels (CaCCs) play important physiological functions in epithelia and other tissues. In frog oocytes the CaCC Ano1 regulates resting membrane potential and the block to polyspermy. Here, we show that Ano1 expression increases the oocyte surface, revealing a novel function for Ano1 in regulating cell morphology. Confocal imaging shows that Ano1 increases microvilli length, which requires ERM-protein-dependent linkage to the cytoskeleton. A dominant-negative form of the ERM protein moesin precludes the Ano1-dependent increase in membrane area. Furthermore, both full-length and the truncated dominant-negative forms of moesin co-localize with Ano1 to the microvilli, and the two proteins co-immunoprecipitate. The Ano1-moesin interaction limits Ano1 lateral membrane mobility and contributes to microvilli scaffolding, therefore stabilizing larger membrane structures. Collectively, these results reveal a newly identified role for Ano1 in shaping the plasma membrane during oogenesis, with broad implications for the regulation of microvilli in epithelia.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas de Microfilamentos/genética , Oocitos/metabolismo , Oogénesis/genética , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Canales de Cloruro/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microfilamentos/metabolismo , Microvellosidades/genética , Oocitos/crecimiento & desarrollo , Mapas de Interacción de Proteínas/genética , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
7.
J Cell Sci ; 128(16): 3143-54, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26116575

RESUMEN

The key proteins mediating store-operated Ca(2+) entry (SOCE) are the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the plasma membrane Ca(2+)-selective channel Orai1. Here, we quantitatively dissect Orai1 trafficking dynamics and show that Orai1 recycles rapidly at the plasma membrane (Kex≃0.1 min(-1)), with ∼40% of the total Orai1 pool localizing to the plasma membrane at steady state. A subset of intracellular Orai1 localizes to a sub-plasmalemal compartment. Store depletion is coupled to Orai1 plasma membrane enrichment in a STIM1-dependent fashion. This is due to trapping of Orai1 into cortical ER STIM1 clusters, leading to its removal from the recycling pool and enrichment at the plasma membrane. Interestingly, upon high STIM1 expression, Orai1 is trapped into STIM1 clusters intracellularly, thus preventing its plasma membrane enrichment following store depletion. Consistent with this, STIM1 knockdown prevents trapping of excess Orai1 into limiting STIM1 clusters in the cortical ER. SOCE-dependent Ca(2+) influx shows a similar biphasic dependence on the Orai1:STIM1 ratio. Therefore, a STIM1-dependent Orai1 'trafficking trap' mechanism controls Orai1 plasma membrane enrichment and SOCE levels, thus modulating the SOCE 'bandwidth' for downstream signaling.


Asunto(s)
Canales de Calcio/genética , Señalización del Calcio/genética , Calcio/metabolismo , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Animales , Células CHO , Canales de Calcio/biosíntesis , Membrana Celular/metabolismo , Cricetulus , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de Neoplasias/biosíntesis , Proteína ORAI1 , Transporte de Proteínas/genética , ARN Interferente Pequeño , Transducción de Señal , Molécula de Interacción Estromal 1
9.
Protein Expr Purif ; 120: 148-52, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26690375

RESUMEN

The Cdc25 family encodes dual specificity protein phosphatases that play critical roles in cell cycle progression. Activation of the Cdc25C represents a primary driver for meiosis progression in Xenopus oocytes. Given its central role in meiosis the Xenopus Cdc25C has been studied extensively, however purification of the recombinant protein is difficult thus preventing better characterization of its function. Here we describe methods to overcome these difficulties resulting in the production of high purity and yield recombinant Xenopus Cdc25C. We use a synthetic Xenopus Cdc25C gene that was codon optimized for expression in E. coli. We further combine an N-terminal His-tag with a C-terminal Strep-tag II, to isolate extremely pure full-length Cdc25C protein. The recombinant Xenopus Cdc25C is active both in vitro using a phosphatase assay and in vivo when injected into Xenopus oocytes. This new approach should be applicable to the purification of other members of the Cdc25 gene family.


Asunto(s)
Escherichia coli/genética , Proteínas de Xenopus/genética , Xenopus/metabolismo , Fosfatasas cdc25/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Oligopéptidos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas de Xenopus/aislamiento & purificación , Proteínas de Xenopus/metabolismo , Fosfatasas cdc25/aislamiento & purificación , Fosfatasas cdc25/metabolismo
10.
J Cell Sci ; 126(Pt 11): 2401-10, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23572507

RESUMEN

Store-operated calcium entry (SOCE) represents a major calcium influx pathway in non-excitable cells and is central to many physiological processes such as T cell activation and mast cell degranulation. SOCE is activated through intricate coordination between the Ca(2+) sensor on the ER membrane (stromal interaction molecule 1, STIM1) and the plasma membrane channel Orai1. When Ca(2+) stores are depleted, STIM1 oligomerizes and physically interacts with Orai1 through its SOAR/CAD domain, resulting in Orai1 gating and Ca(2+) influx. Here, we describe novel inter- and intramolecular FRET sensors in the context of the full-length membrane-anchored STIM1, and show that STIM1 undergoes a conformational change in response to store depletion to adopt a stretched 'open' conformation that exposes SOAR/CAD and allows it to interact with Orai1. Mutational analyses reveal that electrostatic interactions between the predicted first and third coiled-coil domains of STIM1 are not involved in maintaining the 'closed' inactive conformation. In addition, the results argue that an amphipathic α-helix between residues 317 and 336 in the so-called inhibitory domain is important to maintain STIM1 in a closed conformation at rest. Indeed, mutations that alter the amphipathic properties of this helix result in a STIM1 variant that is unable to respond to store depletion in terms of forming puncta, translocation to the cortical ER or activating Orai1.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Multimerización de Proteína/fisiología , Canales de Calcio/química , Canales de Calcio/genética , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteína ORAI1 , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Electricidad Estática , Molécula de Interacción Estromal 1
11.
J Biol Chem ; 288(46): 32941-51, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24097979

RESUMEN

Resistance arteries show accentuated responsiveness to vasoconstrictor agonists in hypertension, and this abnormality relies partly on enhanced Ca(2+) signaling in vascular smooth muscle (VSM). Although inositol 1,4,5-triphosphate receptors (IP3Rs) are abundant in VSM, their role in the molecular remodeling of the Ca(2+) signaling machinery during hypertension has not been addressed. Therefore, we compared IP3R expression and function between mesenteric arteries of normotensive and hypertensive animals. Levels of IP3R transcript and protein were significantly increased in mesenteric arteries of hypertensive animals, and pharmacological inhibition of the IP3R revealed a higher contribution of IP3-dependent Ca(2+) release to vascular contraction in these arteries. Subsequently, we established cultured aortic VSM A7r5 cells as a cellular model that replicates IP3R up-regulation during hypertension by depolarizing the VSM cell membrane. IP3R up-regulation requires Ca(2+) influx through L-type Ca(2+) channels, followed by activation of the calcineurin-NFAT axis, resulting in IP3R transcription. Functionally, IP3R up-regulation in VSM is associated with enhancement and sensitization of IP3-dependent Ca(2+) release, resulting in increased VSM contraction in response to agonist stimulation.


Asunto(s)
Señalización del Calcio , Hipertensión/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/biosíntesis , Contracción Muscular , Proteínas Musculares/biosíntesis , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Regulación hacia Arriba , Animales , Calcineurina/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Línea Celular , Hipertensión/patología , Potenciales de la Membrana , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/patología , Ratones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Factores de Transcripción NFATC/metabolismo , Ratas , Transcripción Genética
12.
J Cell Physiol ; 228(12): 2386-98, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23729281

RESUMEN

The TRP gene family encodes primarily cation non-selective, Ca2+ permeant channels that are involved in a dizzying array of sensory mechanisms. Two channels in this large family TRPV5 and TRPV6 are highly Ca2+ selective and are expressed in epithelia where they are important in Ca2+ uptake. TRPV5/6 are constitutively active, yet the mechanisms regulating their activation in native tissue remains elusive. Here we functionally characterize the Xenopus TRPV6 homolog. xTRPV6 is expressed in the oocyte and encodes a channel that is permeant to divalents including Ca2+ , and displays a high permeability to Mg2+ . The oocyte does not exhibit functional TRPV6-like current at rest, showing that the endogenous channel is somehow maintained in an inactive state. We show that endogenous as well as overexpressed xTRPV6 interacts with xTRPC1 and that this interaction inhibits xTRPV6 currents. As such TRPC1 is likely to regulate the activity of TRPV6 under physiological conditions.


Asunto(s)
Magnesio/metabolismo , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPV/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Mutación , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPV/genética , Proteínas de Xenopus/genética , Xenopus laevis
13.
Sci Rep ; 11(1): 2290, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504898

RESUMEN

Regulation of Ca2+ signaling is critical for the progression of cell division, especially during meiosis to prepare the egg for fertilization. The primary Ca2+ influx pathway in oocytes is Store-Operated Ca2+ Entry (SOCE). SOCE is tightly regulated during meiosis, including internalization of the SOCE channel, Orai1. Orai1 is a four-pass membrane protein with cytosolic N- and C-termini. Orai1 internalization requires a caveolin binding motif (CBM) in the N-terminus as well as the C-terminal cytosolic domain. However, the molecular determinant for Orai1 endocytosis in the C-terminus are not known. Here we show that the Orai1 C-terminus modulates Orai1 endocytosis during meiosis through a structural motif that is based on the strength of the C-terminal intersubunit coiled coil (CC) domains. Deletion mutants show that a minimal C-terminal sequence after transmembrane domain 4 (residues 260-275) supports Orai1 internalization. We refer to this region as the C-terminus Internalization Handle (CIH). Access to CIH however is dependent on the strength of the intersubunit CC. Mutants that increase the stability of the coiled coil prevent internalization independent of specific mutation. We further used human and Xenopus Orai isoforms with different propensity to form C-terminal CC and show a strong correlation between the strength of the CC and Orai internalization. Furthermore, Orai1 internalization does not depend on clathrin, flotillin or PIP2. Collectively these results argue that Orai1 internalization requires both the N-terminal CBM and C-terminal CIH where access to CIH is controlled by the strength of intersubunit C-terminal CC.


Asunto(s)
Meiosis/fisiología , Proteína ORAI1/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Caveolina 1/genética , Caveolina 1/metabolismo , Clatrina/genética , Clatrina/metabolismo , Endocitosis/genética , Endocitosis/fisiología , Femenino , Meiosis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Mutación/genética , Proteína ORAI1/genética , Xenopus laevis , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
14.
Sci Rep ; 11(1): 14090, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238985

RESUMEN

MAIT cells have been shown to be activated upon several viral infections in a TCR-independent manner by responding to inflammatory cytokines secreted by antigen-presenting cells. Recently, a few studies have shown a similar activation of MAIT cells in response to severe acute respiratory coronavirus 2 (SARS-CoV-2) infection. In this study, we investigate the effect of SARS-CoV-2 infection on the frequency and phenotype of MAIT cells by flow cytometry, and we test in vitro stimulation conditions on the capacity to enhance or rescue the antiviral function of MAIT cells from patients with coronavirus disease 2019 (COVID-19). Our study, in agreement with recently published studies, confirmed the decline in MAIT cell frequency of hospitalized donors in comparison to healthy donors. MAIT cells of COVID-19 patients also had lower expression levels of TNF-alpha, perforin and granzyme B upon stimulation with IL-12 + IL-18. 24 h' incubation with IL-7 successfully restored perforin expression levels in COVID-19 patients. Combined, our findings support the growing evidence that SARS-CoV-2 is dysregulating MAIT cells and that IL-7 treatment might improve their function, rendering them more effective in protecting the body against the virus.


Asunto(s)
COVID-19/prevención & control , COVID-19/virología , Interleucina-7/farmacología , Células T Invariantes Asociadas a Mucosa/fisiología , Células T Invariantes Asociadas a Mucosa/virología , SARS-CoV-2/patogenicidad , Células Cultivadas , Femenino , Granzimas/metabolismo , Humanos , Masculino , Células T Invariantes Asociadas a Mucosa/metabolismo , Perforina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Cell Mol Gastroenterol Hepatol ; 12(5): 1809-1830, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34237462

RESUMEN

BACKGROUND & AIMS: The gastrointestinal epithelium plays a crucial role in maintaining homeostasis with the gut microbiome. Mucins are essential for intestinal barrier function and serve as a scaffold for antimicrobial factors. Mucin 2 (MUC2) is the major intestinal gel-forming mucin produced predominantly by goblet cells. Goblet cells express anterior gradient 2 (AGR2), a protein disulfide isomerase that is crucial for proper processing of gel-forming mucins. Here, we investigated 2 siblings who presented with severe infantile-onset inflammatory bowel disease. METHODS: We performed whole-genome sequencing to identify candidate variants. We quantified goblet cell numbers using H&E histology and investigated the expression of gel-forming mucins, stress markers, and goblet cell markers using immunohistochemistry. AGR2-MUC2 binding was evaluated using co-immunoprecipitation. Endoplasmic reticulum (ER) stress regulatory function of mutant AGR2 was examined by expression studies in Human Embryonic Kidney 293T (HEK293T) using tunicamycin to induce ER stress. RESULTS: Both affected siblings were homozygous for a missense variant in AGR2. Patient biopsy specimens showed reduced goblet cells; depletion of MUC2, MUC5AC, and MUC6; up-regulation of AGR2; and increased ER stress. The mutant AGR2 showed reduced capacity to bind MUC2 and alleviate tunicamycin-induced ER stress. CONCLUSIONS: Phenotype-genotype segregation, functional experiments, and the striking similarity of the human phenotype to AGR2-/- mouse models suggest that the AGR2 missense variant is pathogenic. The Mendelian deficiency of AGR2, termed "Enteropathy caused by AGR2 deficiency, Goblet cell Loss, and ER Stress" (EAGLES), results in a mucus barrier defect, the inability to mitigate ER stress, and causes infantile-onset inflammatory bowel disease.


Asunto(s)
Susceptibilidad a Enfermedades , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Mucoproteínas/deficiencia , Moco/metabolismo , Proteínas Oncogénicas/deficiencia , Secuencia de Aminoácidos , Animales , Biomarcadores , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Predisposición Genética a la Enfermedad , Células Caliciformes/metabolismo , Células Caliciformes/patología , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , Mucosa Intestinal/patología , Masculino , Ratones Noqueados , Mucinas/genética , Mucinas/metabolismo , Mucoproteínas/química , Mucoproteínas/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Fenotipo , Análisis de Secuencia de ADN , Hermanos , Relación Estructura-Actividad , Secuenciación Completa del Genoma
16.
Sci Rep ; 9(1): 13076, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506588

RESUMEN

Store-operated Ca2+ entry (SOCE) has been shown to be important for breast cancer metastasis in xenograft mouse models. The ER Ca2+ sensor STIM1 and Orai plasma membrane Ca2+ channels molecularly mediate SOCE. Here we investigate the role of the microRNA machinery in regulating STIM1 expression. We show that STIM1 expression is regulated post-transcriptionally by the miRNA machinery and identify miR-223 and miR-150 as regulators of STIM1 expression in the luminal non-aggressive MCF7 breast cancer cell line. In contrast, STIM1 expression in the more aggressive basal triple-negative MDA-MB-231 cell line is not significantly modulated by a single miRNA species but is rather upregulated due to inhibition of the miRNA machinery through downregulation of Ago2. Consistently, overexpression of Ago2 results in decreased STIM1 protein levels in MDA-MB-231 cells. Clinically, STIM1 and Ago2 expression levels do not correlate with breast cancer progression, however in the basal subtype high STIM1 expression is associated with poorer survival. Our findings show that STIM1 expression is differentially regulated by the miRNA machinery in different cell types and argue for a role for this regulation in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Proteínas de Neoplasias/genética , Interferencia de ARN , Molécula de Interacción Estromal 1/genética , Regiones no Traducidas 3' , Proteínas Argonautas/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Especificidad de Órganos , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN
17.
Sci Adv ; 4(9): eaau1935, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30263962

RESUMEN

Store-operated Ca2+ entry (SOCE) encodes a range of cellular responses downstream of Ca2+ influx through the SOCE channel Orai1. Orai1 recycles at the plasma membrane (PM), with ~40% of the total Orai1 pool residing at the PM at steady state. The mechanisms regulating Orai1 recycling remain poorly understood. We map the domains in Orai1 that are required for its trafficking to and recycling at the PM. We further identify, using biochemical and proteomic approaches, the CCT [chaperonin-containing TCP-1 (T-complex protein 1)] chaperonin complex as a novel regulator of Orai1 recycling by primarily regulating Orai1 endocytosis. We show that Orai1 interacts with CCT through its intracellular loop and that inhibition of CCT-Orai1 interaction increases Orai1 PM residence. This increased residence is functionally significant as it results in prolonged Ca2+ signaling, early formation of STIM1-Orai1 puncta, and more rapid activation of NFAT (nuclear factor of activated T cells) downstream of SOCE. Therefore, the CCT chaperonin is a novel regulator of Orai1 trafficking and, as such, a modulator of Ca2+ signaling and effector activation kinetics.


Asunto(s)
Señalización del Calcio , Membrana Celular/metabolismo , Movimiento Celular , Chaperonina con TCP-1/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Células Cultivadas , Chaperonina con TCP-1/genética , Humanos , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Transporte de Proteínas , Molécula de Interacción Estromal 1/genética
18.
Channels (Austin) ; 6(5): 379-84, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22878752

RESUMEN

The Ins(1,4,5)P 3 receptor acts as a central hub for Ca ( 2+) signaling by integrating multiple signaling modalities into Ca ( 2+) release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P 3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P 3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P 3-dependent Ca ( 2+) release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P 3 receptor results in decreased Ins(1,4,5)P 3-dependent Ca ( 2+) release and lowers the Ins(1,4,5)P 3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P 3-dependent Ca ( 2+) release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P 3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P 3 receptor function.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Calcio/metabolismo , Línea Celular , Pollos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Meiosis , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Ratas , Treonina/metabolismo , Xenopus/metabolismo
19.
PLoS One ; 6(11): e27928, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22140486

RESUMEN

The activation of vertebrate development at fertilization relies on IP3-dependent Ca²âº release, a pathway that is sensitized during oocyte maturation. This sensitization has been shown to correlate with the remodeling of the endoplasmic reticulum into large ER patches, however the mechanisms involved are not clear. Here we show that IP3 receptors within ER patches have a higher sensitivity to IP3 than those in the neighboring reticular ER. The lateral diffusion rate of IP3 receptors in both ER domains is similar, and ER patches dynamically fuse with reticular ER, arguing that IP3 receptors exchange freely between the two ER compartments. These results suggest that increasing the density of IP3 receptors through ER remodeling is sufficient to sensitize IP3-dependent Ca²âº release. Mathematical modeling supports this concept of 'geometric sensitization' of IP3 receptors as a population, and argues that it depends on enhanced Ca²âº-dependent cooperativity at sub-threshold IP3 concentrations. This represents a novel mechanism of tuning the sensitivity of IP3 receptors through ER remodeling during meiosis.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Animales , Señalización del Calcio , Análisis por Conglomerados , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Meiosis , Ratones , Oocitos/metabolismo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA