Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(46): 11832-11837, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30373833

RESUMEN

The speed of impulse transmission is critical for optimal neural circuit function, but it is unclear how the appropriate conduction velocity is established in individual axons. The velocity of impulse transmission is influenced by the thickness of the myelin sheath and the morphology of electrogenic nodes of Ranvier along axons. Here we show that myelin thickness and nodal gap length are reversibly altered by astrocytes, glial cells that contact nodes of Ranvier. Thrombin-dependent proteolysis of a cell adhesion molecule that attaches myelin to the axon (neurofascin 155) is inhibited by vesicular release of thrombin protease inhibitors from perinodal astrocytes. Transgenic mice expressing a dominant-negative fragment of VAMP2 in astrocytes, to reduce exocytosis by 50%, exhibited detachment of adjacent paranodal loops of myelin from the axon, increased nodal gap length, and thinning of the myelin sheath in the optic nerve. These morphological changes alter the passive cable properties of axons to reduce conduction velocity and spike-time arrival in the CNS in parallel with a decrease in visual acuity. All effects were reversed by the thrombin inhibitor Fondaparinux. Similar results were obtained by viral transfection of tetanus toxin into astrocytes of rat corpus callosum. Previously, it was unknown how the myelin sheath could be thinned and the functions of perinodal astrocytes were not well understood. These findings describe a form of nervous system plasticity in which myelin structure and conduction velocity are adjusted by astrocytes. The thrombin-dependent cleavage of neurofascin 155 may also have relevance to myelin disruption and repair.


Asunto(s)
Astrocitos/fisiología , Vaina de Mielina/fisiología , Animales , Axones/metabolismo , Humanos , Ratones , Ratones Transgénicos , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/fisiología , Conducción Nerviosa/fisiología , Neuroglía/metabolismo , Nervio Óptico/metabolismo , Nódulos de Ranvier/metabolismo , Relación Estructura-Actividad , Trombina , Proteína 2 de Membrana Asociada a Vesículas
2.
Neurosci Res ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38554941

RESUMEN

Neural activity can increase the length of nodes of Ranvier (NOR) and slow impulse transmission; however, little is known about the biologically and clinically important recovery process. Sensory deprivation promotes neural plasticity in many phenomena, raising the question of whether recovery of NOR morphology is influenced by sensory deprivation. The results show that NOR gap length recovery in mouse optic nerve was not affected significantly by binocular visual deprivation imposed by maintaining mice in 24 hr dark for 30 days compared to mice recovering under normal visual experience. The findings provide insight into the cellular mechanism of NOR plasticity.

3.
eNeuro ; 9(6)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36302632

RESUMEN

Oligodendrocytes, the myelinating cells of the CNS, promote rapid action potential conduction along axons. Changes in the geometry of gaps between myelin segments, known as nodes of Ranvier, affect the conduction speed of neuronal impulses and can ultimately alter neural synchronization and circuit function. In contrast to synaptic plasticity, much less is known about how neural activity may affect node of Ranvier structure. Recently, perinodal astrocytes have been shown to remodel nodes of Ranvier by regulating thrombin proteolysis, but it is not known whether neural activity influences this process. To test this hypothesis, we used transgenic mice with astrocytic expression of a dominant-negative vesicle-associated membrane protein 2 ([gfap]dnVAMP2) to reduce exocytosis of thrombin inhibitors, modulating astrocytic regulation of paranodal loop attachment to induce nodal remodeling, under normal conditions and in adult mice maintained in darkness from postnatal day 40 (P40) to P70. This mechanism of nodal lengthening proceeded normally following binocular visual deprivation (BVD). The effect of BVD on nodal plasticity in animals with unimpaired astrocyte function has not been previously investigated. We find that when exocytosis from astrocytes was unimpaired, nodal gap length was not altered by BVD in adult mice. We conclude that if perinodal astrocytes participate in activity-dependent myelin remodeling through exocytosis, then, as with synaptic plasticity in the visual system, the process must be driven by alterations in neuronal firing other than those produced by BVD.


Asunto(s)
Nódulos de Ranvier , Trombina , Ratones , Animales , Nódulos de Ranvier/metabolismo , Trombina/metabolismo , Nervio Óptico , Vaina de Mielina/metabolismo , Axones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA