Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(33): 20027-20037, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32759210

RESUMEN

Research on global patterns of diversity has been dominated by studies seeking explanations for the equator-to-poles decline in richness of most groups of organisms, namely the latitudinal diversity gradient. A problem with this gradient is that it conflates two key explanations, namely biome stability (age and area) and productivity (ecological opportunity). Investigating longitudinal gradients in diversity can overcome this problem. Here we investigate a longitudinal gradient in plant diversity in the megadiverse Cape Floristic Region (CFR). We test predictions of the age and area and ecological opportunity hypotheses using metrics for both taxonomic and phylogenetic diversity and turnover. Our plant dataset includes modeled occurrences for 4,813 species and dated molecular phylogenies for 21 clades endemic to the CFR. Climate and biome stability were quantified over the past 140,000 y for testing the age and area hypothesis, and measures of topographic diversity, rainfall seasonality, and productivity were used to test the ecological opportunity hypothesis. Results from our spatial regression models showed biome stability, rainfall seasonality, and topographic heterogeneity were the strongest predictors of taxonomic diversity. Biome stability alone was the strongest predictor of all diversity metrics, and productivity played only a marginal role. We argue that age and area in conjunction with non-productivity-based measures of ecological opportunity explain the CFR's longitudinal diversity gradient. We suggest that this model may possibly be a general explanation for global diversity patterns, unconstrained as it is by the collinearities underpinning the latitudinal diversity gradient.


Asunto(s)
Biodiversidad , Plantas/clasificación , Evolución Biológica , Clima , Ecosistema , Filogenia , Fenómenos Fisiológicos de las Plantas , Plantas/genética
2.
Glob Chang Biol ; 21(10): 3712-25, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25969925

RESUMEN

Quantifying landscape-scale methane (CH4 ) fluxes from boreal and arctic regions, and determining how they are controlled, is critical for predicting the magnitude of any CH4 emission feedback to climate change. Furthermore, there remains uncertainty regarding the relative importance of small areas of strong methanogenic activity, vs. larger areas with net CH4 uptake, in controlling landscape-level fluxes. We measured CH4 fluxes from multiple microtopographical subunits (sedge-dominated lawns, interhummocks and hummocks) within an aapa mire in subarctic Finland, as well as in drier ecosystems present in the wider landscape, lichen heath and mountain birch forest. An intercomparison was carried out between fluxes measured using static chambers, up-scaled using a high-resolution landcover map derived from aerial photography and eddy covariance. Strong agreement was observed between the two methodologies, with emission rates greatest in lawns. CH4 fluxes from lawns were strongly related to seasonal fluctuations in temperature, but their floating nature meant that water-table depth was not a key factor in controlling CH4 release. In contrast, chamber measurements identified net CH4 uptake in birch forest soils. An intercomparison between the aerial photography and satellite remote sensing demonstrated that quantifying the distribution of the key CH4 emitting and consuming plant communities was possible from satellite, allowing fluxes to be scaled up to a 100 km(2) area. For the full growing season (May to October), ~ 1.1-1.4 g CH4  m(-2) was released across the 100 km(2) area. This was based on up-scaled lawn emissions of 1.2-1.5 g CH4  m(-2) , vs. an up-scaled uptake of 0.07-0.15 g CH4  m(-2) by the wider landscape. Given the strong temperature sensitivity of the dominant lawn fluxes, and the fact that lawns are unlikely to dry out, climate warming may substantially increase CH4 emissions in northern Finland, and in aapa mire regions in general.


Asunto(s)
Bosques , Metano/metabolismo , Humedales , Regiones Árticas , Cambio Climático , Finlandia
3.
Conserv Biol ; 25(2): 305-15, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21284728

RESUMEN

Networks of sites of high importance for conservation of biological diversity are a cornerstone of current conservation strategies but are fixed in space and time. As climate change progresses, substantial shifts in species' ranges may transform the ecological community that can be supported at a given site. Thus, some species in an existing network may not be protected in the future or may be protected only if they can move to sites that in future provide suitable conditions. We developed an approach to determine appropriate climate-change adaptation strategies for individual sites within a network that was based on projections of future changes in the relative proportions of emigrants (species for which a site becomes climatically unsuitable), colonists (species for which a site becomes climatically suitable), and persistent species (species able to remain within a site despite the climatic change). Our approach also identifies key regions where additions to a network could enhance its future effectiveness. Using the sub-Saharan African Important Bird Area (IBA) network as a case study, we found that appropriate conservation strategies for individual sites varied widely across sub-Saharan Africa, and key regions where new sites could help increase network robustness varied in space and time. Although these results highlight the potential difficulties within any planning framework that seeks to address climate-change adaptation needs, they demonstrate that such planning frameworks are necessary, if current conservation strategies are to be adapted effectively, and feasible, if applied judiciously.


Asunto(s)
Aves/fisiología , Cambio Climático , Conservación de los Recursos Naturales , Adaptación Fisiológica , África del Sur del Sahara , Animales , Biodiversidad , Especies en Peligro de Extinción , Geografía
4.
Nature ; 427(6970): 145-8, 2004 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-14712274

RESUMEN

Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.


Asunto(s)
Biodiversidad , Efecto Invernadero , Modelos Teóricos , Animales , Carbono/metabolismo , Conservación de los Recursos Naturales , Geografía , Medición de Riesgo , Especificidad de la Especie , Factores de Tiempo
5.
Science ; 369(6507)2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32855310

RESUMEN

Strategies for 21st-century environmental management and conservation under global change require a strong understanding of the biological mechanisms that mediate responses to climate- and human-driven change to successfully mitigate range contractions, extinctions, and the degradation of ecosystem services. Biodiversity responses to past rapid warming events can be followed in situ and over extended periods, using cross-disciplinary approaches that provide cost-effective and scalable information for species' conservation and the maintenance of resilient ecosystems in many bioregions. Beyond the intrinsic knowledge gain such integrative research will increasingly provide the context, tools, and relevant case studies to assist in mitigating climate-driven biodiversity losses in the 21st century and beyond.


Asunto(s)
Biodiversidad , Cambio Climático/historia , Conservación de los Recursos Naturales , Extinción Biológica , Animales , Archivos , Historia Antigua , Paleontología
6.
Ecol Lett ; 12(5): 420-31, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19379136

RESUMEN

Despite widespread concern, the continuing effectiveness of networks of protected areas under projected 21st century climate change is uncertain. Shifts in species' distributions could mean these resources will cease to afford protection to those species for which they were originally established. Using modelled projected shifts in the distributions of sub-Saharan Africa's entire breeding avifauna, we show that species turnover across the continent's Important Bird Area (IBA) network is likely to vary regionally and will be substantial at many sites (> 50% at 42% of IBAs by 2085 for priority species). Persistence of suitable climate space across the network as a whole, however, is notably high, with 88-92% of priority species retaining suitable climate space in >or= 1 IBA(s) in which they are currently found. Only 7-8 priority species lose climatic representation from the network. Hence, despite the likelihood of significant community disruption, we demonstrate that rigorously defined networks of protected areas can play a key role in mitigating the worst impacts of climate change on biodiversity.


Asunto(s)
Aves/fisiología , Conservación de los Recursos Naturales/métodos , Demografía , Ecosistema , Efecto Invernadero , Modelos Teóricos , África del Sur del Sahara , Animales , Geografía , Especificidad de la Especie
8.
Environ Manage ; 43(5): 836-45, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18491184

RESUMEN

Global climate change, along with continued habitat loss and fragmentation, is now recognized as being a major threat to future biodiversity. There is a very real threat to species, arising from the need to shift their ranges in the future to track regions of suitable climate. The Important Bird Area (IBA) network is a series of sites designed to conserve avian diversity in the face of current threats from factors such as habitat loss and fragmentation. However, in common with other networks, the IBA network is based on the assumption that the climate will remain unchanged in the future. In this article, we provide a method to simulate the occurrence of species of conservation concern in protected areas, which could be used as a first-step approach to assess the potential impacts of climate change upon such species in protected areas. We use species-climate response surface models to relate the occurrence of 12 biome-restricted African species to climate data at a coarse (quarter degree-degree latitude-longitude) resolution and then intersect the grid model output with IBA outlines to simulate the occurrence of the species in South African IBAs. Our results demonstrate that this relatively simple technique provides good simulations of current species' occurrence in protected areas. We then use basic habitat data for IBAs along with habitat preference data for the species to reduce over-prediction and further improve predictive ability. This approach can be used with future climate change scenarios to highlight vulnerable species in IBAs in the future and allow practical recommendations to be made to enhance the IBA network and minimize the predicted impacts of climate change.


Asunto(s)
Biodiversidad , Clima , Conservación de los Recursos Naturales/métodos , Efecto Invernadero , Modelos Teóricos , África , Simulación por Computador , Especificidad de la Especie
9.
Science ; 361(6405): 920-923, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30166491

RESUMEN

Impacts of global climate change on terrestrial ecosystems are imperfectly constrained by ecosystem models and direct observations. Pervasive ecosystem transformations occurred in response to warming and associated climatic changes during the last glacial-to-interglacial transition, which was comparable in magnitude to warming projected for the next century under high-emission scenarios. We reviewed 594 published paleoecological records to examine compositional and structural changes in terrestrial vegetation since the last glacial period and to project the magnitudes of ecosystem transformations under alternative future emission scenarios. Our results indicate that terrestrial ecosystems are highly sensitive to temperature change and suggest that, without major reductions in greenhouse gas emissions to the atmosphere, terrestrial ecosystems worldwide are at risk of major transformation, with accompanying disruption of ecosystem services and impacts on biodiversity.


Asunto(s)
Biodiversidad , Cambio Climático
10.
Ambio ; 46(3): 277-290, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27804097

RESUMEN

Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of 'Continental Europe'. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50-100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40-50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.


Asunto(s)
Biodiversidad , Cambio Climático , Modelos Teóricos , Animales , Aves , Mariposas Diurnas , Europa (Continente) , Odonata , Plantas , Humedales
11.
Ambio ; 33(7): 398-403, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15573568

RESUMEN

At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 degrees C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the "Little Ice Age spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic conditions that are apparently without precedent during the Pleistocene is likely to be considerable, particularly as their exposure to co-occurring environmental changes (such as enhanced levels of UV-B, deposition of nitrogen compounds from the atmosphere, heavy metal and acidic pollution, radioactive contamination, increased habitat fragmentation) is also without precedent.


Asunto(s)
Clima Frío , Ecosistema , Rayos Ultravioleta , Animales , Regiones Árticas , Monitoreo del Ambiente/historia , Fósiles , Historia Antigua , Humanos , Cubierta de Hielo , Plantas
12.
Ambio ; 33(7): 448-58, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15573572

RESUMEN

Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most incoming radiation, to summer when the ecosystem absorbs most incoming radiation. Vegetation profoundly influences the water and energy exchange of Arctic ecosystems. Albedo during the period of snow cover declines from tundra to forest tundra to deciduous forest to evergreen forest. Shrubs and trees increase snow depth which in turn increases winter soil temperatures. Future changes in vegetation driven by climate change are therefore, very likely to profoundly alter regional climate.


Asunto(s)
Clima Frío , Ecosistema , Monitoreo del Ambiente , Rayos Ultravioleta , Regiones Árticas , Fenómenos Bioquímicos , Bioquímica , Biodiversidad , Carbono/metabolismo , Gases , Plantas/metabolismo , Estaciones del Año , Suelo , Agua
13.
Ambio ; 33(7): 474-9, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15573575

RESUMEN

An assessment of the impacts of changes in climate and UV-B radiation on Arctic terrestrial ecosystems, made within the Arctic Climate Impacts Assessment (ACIA), highlighted the profound implications of projected warming in particular for future ecosystem services, biodiversity and feedbacks to climate. However, although our current understanding of ecological processes and changes driven by climate and UV-B is strong in some geographical areas and in some disciplines, it is weak in others. Even though recently the strength of our predictions has increased dramatically with increased research effort in the Arctic and the introduction of new technologies, our current understanding is still constrained by various uncertainties. The assessment is based on a range of approaches that each have uncertainties, and on data sets that are often far from complete. Uncertainties arise from methodologies and conceptual frameworks, from unpredictable surprises, from lack of validation of models, and from the use of particular scenarios, rather than predictions, of future greenhouse gas emissions and climates. Recommendations to reduce the uncertainties are wide-ranging and relate to all disciplines within the assessment. However, a repeated theme is the critical importance of achieving an adequate spatial and long-term coverage of experiments, observations and monitoring of environmental changes and their impacts throughout the sparsely populated and remote region that is the Arctic.


Asunto(s)
Clima Frío , Ecosistema , Monitoreo del Ambiente/métodos , Rayos Ultravioleta , Animales , Regiones Árticas , Biodiversidad , Recolección de Datos/métodos , Predicción/métodos , Modelos Teóricos , Plantas , Microbiología del Suelo , Terminología como Asunto
14.
Ambio ; 33(7): 404-17, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15573569

RESUMEN

The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in super-dominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well adapted to the Arctic's climate: some can metabolize at temperatures down to -39 degrees C. Cyanobacteria and algae have a wide range of adaptive strategies that allow them to avoid, or at least minimize UV injury. Microorganisms can tolerate most environmental conditions and they have short generation times which can facilitate rapid adaptation to new environments. In contrast, Arctic plant and animal species are very likely to change their distributions rather than evolve significantly in response to warming.


Asunto(s)
Biodiversidad , Rayos Ultravioleta , Adaptación Fisiológica , Animales , Regiones Árticas , Evolución Biológica , Plantas , Microbiología del Suelo , Especificidad de la Especie , Temperatura
15.
Ambio ; 33(7): 436-47, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15573571

RESUMEN

Species individualistic responses to warming and increased UV-B radiation are moderated by the responses of neighbors within communities, and trophic interactions within ecosystems. All of these responses lead to changes in ecosystem structure. Experimental manipulation of environmental factors expected to change at high latitudes showed that summer warming of tundra vegetation has generally led to smaller changes than fertilizer addition. Some of the factors manipulated have strong effects on the structure of Arctic ecosystems but the effects vary regionally, with the greatest response of plant and invertebrate communities being observed at the coldest locations. Arctic invertebrate communities are very likely to respond rapidly to warming whereas microbial biomass and nutrient stocks are more stable. Experimentally enhanced UV-B radiation altered the community composition of gram-negative bacteria and fungi, but not that of plants. Increased plant productivity due to warmer summers may dominate food-web dynamics. Trophic interactions of tundra and sub-Arctic forest plant-based food webs are centered on a few dominant animal species which often have cyclic population fluctuations that lead to extremely high peak abundances in some years. Population cycles of small rodents and insect defoliators such as the autumn moth affect the structure and diversity of tundra and forest-tundra vegetation and the viability of a number of specialist predators and parasites. Ice crusting in warmer winters is likely to reduce the accessibility of plant food to lemmings, while deep snow may protect them from snow-surface predators. In Fennoscandia, there is evidence already for a pronounced shift in small rodent community structure and dynamics that have resulted in a decline of predators that specialize in feeding on small rodents. Climate is also likely to alter the role of insect pests in the birch forest system: warmer winters may increase survival of eggs and expand the range of the insects. Insects that harass reindeer in the summer are also likely to become more widespread, abundant and active during warmer summers while refuges for reindeer/caribou on glaciers and late snow patches will probably disappear.


Asunto(s)
Clima Frío , Ecosistema , Monitoreo del Ambiente , Rayos Ultravioleta , Animales , Regiones Árticas , Biodiversidad , Insectos , Plantas , Microbiología del Suelo
16.
Ambio ; 33(7): 469-73, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15573574

RESUMEN

An assessment of impacts on Arctic terrestrial ecosystems has emphasized geographical variability in responses of species and ecosystems to environmental change. This variability is usually associated with north-south gradients in climate, biodiversity, vegetation zones, and ecosystem structure and function. It is clear, however, that significant east-west variability in environment, ecosystem structure and function, environmental history, and recent climate variability is also important. Some areas have cooled while others have become warmer. Also, east-west differences between geographical barriers of oceans, archipelagos and mountains have contributed significantly in the past to the ability of species and vegetation zones to relocate in response to climate changes, and they have created the isolation necessary for genetic differentiation of populations and biodiversity hot-spots to occur. These barriers will also affect the ability of species to relocate during projected future warming. To include this east-west variability and also to strike a balance between overgeneralization and overspecialization, the ACIA identified four major sub regions based on large-scale differences in weather and climate-shaping factors. Drawing on information, mostly model output that can be related to the four ACIA subregions, it is evident that geographical barriers to species re-location, particularly the distribution of landmasses and separation by seas, will affect the northwards shift in vegetation zones. The geographical constraints--or facilitation--of northward movement of vegetation zones will affect the future storage and release of carbon, and the exchange of energy and water between biosphere and atmosphere. In addition, differences in the ability of vegetation zones to re-locate will affect the biodiversity associated with each zone while the number of species threatened by climate change varies greatly between subregions with a significant hot-spot in Beringia. Overall, the subregional synthesis demonstrates the difficulty of generalizing projections of responses of ecosystem structure and function, species loss, and biospheric feedbacks to the climate system for the whole Arctic region and implies a need for a far greater understanding of the spatial variability in the responses of terrestrial arctic ecosystems to climate change.


Asunto(s)
Clima Frío , Ecosistema , Rayos Ultravioleta , Animales , Regiones Árticas , Biodiversidad , Carbono/metabolismo , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Plantas
17.
Ambio ; 33(7): 459-68, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15573573

RESUMEN

Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net effects of climate change on terrestrial feedbacks to the climate system. This uncertainty applies to magnitude, and even direction of some of the feedbacks.


Asunto(s)
Clima Frío , Ecosistema , Rayos Ultravioleta , Regiones Árticas , Biodiversidad , Carbono/metabolismo , Monitoreo del Ambiente , Retroalimentación Fisiológica , Gases/metabolismo , Plantas , Agua/metabolismo
18.
Ambio ; 33(7): 418-35, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15573570

RESUMEN

Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.


Asunto(s)
Clima Frío , Rayos Ultravioleta , Adaptación Fisiológica , Animales , Regiones Árticas , Biodiversidad , Monitoreo del Ambiente , Variación Genética , Plantas , Estaciones del Año , Especificidad de la Especie , Tiempo (Meteorología)
19.
Ecol Evol ; 3(15): 4998-5010, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24455131

RESUMEN

Measuring and modeling carbon (C) stock changes in terrestrial ecosystems are pivotal in addressing global C-cycling model uncertainties. Difficulties in detecting small short-term changes in relatively large C stocks require the development of robust sensitive flux measurement techniques. Net ecosystem exchange (NEE) ground-level chambers are increasingly used to assess C dynamics in low vegetation ecosystems but, to date, have lacked formal rigorous field validation against measured C stock changes. We developed and deployed an automated and multiplexed C-flux chamber system in grassland mesocosms in order rigorously to compare ecosystem total C budget obtained using hourly C-flux measurements versus destructive net C balance. The system combines transparent NEE and opaque respiration chambers enabling partitioning of photosynthetic and respiratory fluxes. The C-balance comparison showed good agreement between the two methods, but only after NEE fluxes were corrected for light reductions due to chamber presence. The dark chamber fluxes allowed assessing temperature sensitivity of ecosystem respiration (R eco) components (i.e., heterotrophic vs. autotrophic) at different growth stages. We propose that such automated flux chamber systems can provide an accurate C balance, also enabling pivotal partitioning of the different C-flux components (e.g., photosynthesis and respiration) suitable for model evaluation and developments.

20.
PLoS One ; 8(4): e61963, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23613985

RESUMEN

Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.


Asunto(s)
Clima , Ecosistema , Cubierta de Hielo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA