Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 349-375, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30673536

RESUMEN

Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.


Asunto(s)
Inmunidad Innata/genética , ARN Bicatenario/genética , Virosis/inmunología , 2',5'-Oligoadenilato Sintetasa/metabolismo , Animales , Proteína 58 DEAD Box/metabolismo , Humanos , Inmunomodulación , Mamíferos , Nucleótido Desaminasas/metabolismo , Interferencia de ARN , eIF-2 Quinasa/metabolismo
2.
Nat Rev Mol Cell Biol ; 23(4): 286-301, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34815573

RESUMEN

Double-stranded RNA (dsRNA) is associated with most viral infections - it either constitutes the viral genome (in the case of dsRNA viruses) or is generated in host cells during viral replication. Hence, nearly all organisms have the capability of recognizing dsRNA and mounting a response, the primary aim of which is to mitigate the potential infection. In vertebrates, a set of innate immune receptors for dsRNA induce a multitude of cell-intrinsic and cell-extrinsic immune responses upon dsRNA recognition. Notably, recent studies showed that vertebrate cells can accumulate self-derived dsRNAs or dsRNA-like species upon dysregulation of several cellular processes, activating the very same immune pathways as in infected cells. On the one hand, such aberrant immune activation in the absence of infection can lead to pathogenesis of immune disorders, such as Aicardi-Goutières syndrome. On the other hand, the same innate immune reaction can be induced in a controlled setting for a therapeutic benefit, as occurs in immunotherapies. In this Review, we describe mechanisms by which immunostimulatory dsRNAs are generated in mammalian cells, either by viruses or by the host cells, and how cells respond to them, with the focus on recent developments regarding the role of cellular dsRNAs in immune modulation.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , Virosis , Animales , Inmunidad Innata , Mamíferos , ARN Bicatenario , Virosis/genética , Replicación Viral
3.
Cell ; 177(5): 1187-1200.e16, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31006531

RESUMEN

The conventional view posits that E3 ligases function primarily through conjugating ubiquitin (Ub) to their substrate molecules. We report here that RIPLET, an essential E3 ligase in antiviral immunity, promotes the antiviral signaling activity of the viral RNA receptor RIG-I through both Ub-dependent and -independent manners. RIPLET uses its dimeric structure and a bivalent binding mode to preferentially recognize and ubiquitinate RIG-I pre-oligomerized on dsRNA. In addition, RIPLET can cross-bridge RIG-I filaments on longer dsRNAs, inducing aggregate-like RIG-I assemblies. The consequent receptor clustering synergizes with the Ub-dependent mechanism to amplify RIG-I-mediated antiviral signaling in an RNA-length dependent manner. These observations show the unexpected role of an E3 ligase as a co-receptor that directly participates in receptor oligomerization and ligand discrimination. It also highlights a previously unrecognized mechanism by which the innate immune system measures foreign nucleic acid length, a common criterion for self versus non-self nucleic acid discrimination.


Asunto(s)
Inmunidad Innata , ARN Bicatenario/inmunología , Transducción de Señal/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitina/inmunología , Células A549 , Animales , Proteína 58 DEAD Box/inmunología , Células HEK293 , Humanos , Ratones , Receptores Inmunológicos
4.
Cell ; 172(4): 797-810.e13, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29395326

RESUMEN

Aberrant activation of innate immune receptors can cause a spectrum of immune disorders, such as Aicardi-Goutières syndrome (AGS). One such receptor is MDA5, a viral dsRNA sensor that induces antiviral immune response. Using a newly developed RNase-protection/RNA-seq approach, we demonstrate here that constitutive activation of MDA5 in AGS results from the loss of tolerance to cellular dsRNAs formed by Alu retroelements. While wild-type MDA5 cannot efficiently recognize Alu-dsRNAs because of its limited filament formation on imperfect duplexes, AGS variants of MDA5 display reduced sensitivity to duplex structural irregularities, assembling signaling-competent filaments on Alu-dsRNAs. Moreover, we identified an unexpected role of an RNA-rich cellular environment in suppressing aberrant MDA5 oligomerization, highlighting context dependence of self versus non-self discrimination. Overall, our work demonstrates that the increased efficiency of MDA5 in recognizing dsRNA comes at a cost of self-recognition and implicates a unique role of Alu-dsRNAs as virus-like elements that shape the primate immune system.


Asunto(s)
Elementos Alu/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Helicasa Inducida por Interferón IFIH1/inmunología , Malformaciones del Sistema Nervioso/inmunología , Multimerización de Proteína/inmunología , ARN Bicatenario/inmunología , Autotolerancia , Células A549 , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/patología , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Helicasa Inducida por Interferón IFIH1/genética , Muramidasa , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Fragmentos de Péptidos , Multimerización de Proteína/genética , ARN Bicatenario/genética , Células THP-1
5.
Nat Immunol ; 21(1): 17-29, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819255

RESUMEN

Pathogen-derived nucleic acids are crucial signals for innate immunity. Despite the structural similarity between those and host nucleic acids, mammalian cells have been able to evolve powerful innate immune signaling pathways that originate from the detection of cytosolic nucleic acid species, one of the most prominent being the cGAS-STING pathway for DNA and the RLR-MAVS pathway for RNA, respectively. Recent advances have revealed a plethora of regulatory mechanisms that are crucial for balancing the activity of nucleic acid sensors for the maintenance of overall cellular homeostasis. Elucidation of the various mechanisms that enable cells to maintain control over the activity of cytosolic nucleic acid sensors has provided new insight into the pathology of human diseases and, at the same time, offers a rich and largely unexplored source for new therapeutic targets. This Review addresses the emerging literature on regulation of the sensing of cytosolic DNA and RNA via cGAS and RLRs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 58 DEAD Box/metabolismo , ADN/inmunología , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , ARN/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/inmunología , Receptores Inmunológicos , Transducción de Señal/inmunología
6.
Immunity ; 55(8): 1354-1369.e8, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926508

RESUMEN

FoxP3 is an essential transcription factor (TF) for immunologic homeostasis, but how it utilizes the common forkhead DNA-binding domain (DBD) to perform its unique function remains poorly understood. We here demonstrated that unlike other known forkhead TFs, FoxP3 formed a head-to-head dimer using a unique linker (Runx1-binding region [RBR]) preceding the forkhead domain. Head-to-head dimerization conferred distinct DNA-binding specificity and created a docking site for the cofactor Runx1. RBR was also important for proper folding of the forkhead domain, as truncation of RBR induced domain-swap dimerization of forkhead, which was previously considered the physiological form of FoxP3. Rather, swap-dimerization impaired FoxP3 function, as demonstrated with the disease-causing mutation R337Q, whereas a swap-suppressive mutation largely rescued R337Q-mediated functional impairment. Altogether, our findings suggest that FoxP3 can fold into two distinct dimerization states: head-to-head dimerization representing functional specialization of an ancient DBD and swap dimerization associated with impaired functions.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Linfocitos T Reguladores , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , ADN , Dimerización , Factores de Transcripción Forkhead/metabolismo , Homeostasis
7.
Mol Cell ; 83(7): 1180-1196.e8, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028415

RESUMEN

Proper defense against microbial infection depends on the controlled activation of the immune system. This is particularly important for the RIG-I-like receptors (RLRs), which recognize viral dsRNA and initiate antiviral innate immune responses with the potential of triggering systemic inflammation and immunopathology. Here, we show that stress granules (SGs), molecular condensates that form in response to various stresses including viral dsRNA, play key roles in the controlled activation of RLR signaling. Without the SG nucleators G3BP1/2 and UBAP2L, dsRNA triggers excessive inflammation and immune-mediated apoptosis. In addition to exogenous dsRNA, host-derived dsRNA generated in response to ADAR1 deficiency is also controlled by SG biology. Intriguingly, SGs can function beyond immune control by suppressing viral replication independently of the RLR pathway. These observations thus highlight the multi-functional nature of SGs as cellular "shock absorbers" that converge on protecting cell homeostasis by dampening both toxic immune response and viral replication.


Asunto(s)
ADN Helicasas , ARN Helicasas , Humanos , ADN Helicasas/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Gránulos de Estrés , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Inmunidad Innata , Inflamación/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas Portadoras/metabolismo
8.
Immunity ; 54(12): 2676-2680, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34739870

RESUMEN

The 2005 Immunity paper by Karikó et al. has been hailed as a cornerstone insight that directly led to the design and delivery of the mRNA vaccines against COVID-19. We asked experts in pathogen sensing, vaccine development, and public health to provide their perspective on the study and its implications.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/fisiología , Desarrollo de Vacunas/historia , Vacunas de ARNm/inmunología , Animales , Historia del Siglo XXI , Humanos , ARN Mensajero/inmunología , Organización Mundial de la Salud
9.
Nature ; 624(7991): 433-441, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030726

RESUMEN

FOXP3 is a transcription factor that is essential for the development of regulatory T cells, a branch of T cells that suppress excessive inflammation and autoimmunity1-5. However, the molecular mechanisms of FOXP3 remain unclear. Here we here show that FOXP3 uses the forkhead domain-a DNA-binding domain that is commonly thought to function as a monomer or dimer-to form a higher-order multimer after binding to TnG repeat microsatellites. The cryo-electron microscopy structure of FOXP3 in a complex with T3G repeats reveals a ladder-like architecture, whereby two double-stranded DNA molecules form the two 'side rails' bridged by five pairs of FOXP3 molecules, with each pair forming a 'rung'. Each FOXP3 subunit occupies TGTTTGT within the repeats in a manner that is indistinguishable from that of FOXP3 bound to the forkhead consensus motif (TGTTTAC). Mutations in the intra-rung interface impair TnG repeat recognition, DNA bridging and the cellular functions of FOXP3, all without affecting binding to the forkhead consensus motif. FOXP3 can tolerate variable inter-rung spacings, explaining its broad specificity for TnG-repeat-like sequences in vivo and in vitro. Both FOXP3 orthologues and paralogues show similar TnG repeat recognition and DNA bridging. These findings therefore reveal a mode of DNA recognition that involves transcription factor homomultimerization and DNA bridging, and further implicates microsatellites in transcriptional regulation and diseases.


Asunto(s)
ADN , Factores de Transcripción Forkhead , Repeticiones de Microsatélite , Secuencia de Bases , Secuencia de Consenso , Microscopía por Crioelectrón , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/ultraestructura , Repeticiones de Microsatélite/genética , Mutación , Motivos de Nucleótidos , Dominios Proteicos , Multimerización de Proteína , Linfocitos T Reguladores/metabolismo
10.
Mol Cell ; 81(3): 599-613.e8, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33373584

RESUMEN

RNA helicases and E3 ubiquitin ligases mediate many critical functions in cells, but their actions have largely been studied in distinct biological contexts. Here, we uncover evolutionarily conserved rules of engagement between RNA helicases and tripartite motif (TRIM) E3 ligases that lead to their functional coordination in vertebrate innate immunity. Using cryoelectron microscopy and biochemistry, we show that RIG-I-like receptors (RLRs), viral RNA receptors with helicase domains, interact with their cognate TRIM/TRIM-like E3 ligases through similar epitopes in the helicase domains. Their interactions are avidity driven, restricting the actions of TRIM/TRIM-like proteins and consequent immune activation to RLR multimers. Mass spectrometry and phylogeny-guided biochemical analyses further reveal that similar rules of engagement may apply to diverse RNA helicases and TRIM/TRIM-like proteins. Our analyses suggest not only conserved substrates for TRIM proteins but also, unexpectedly, deep evolutionary connections between TRIM proteins and RNA helicases, linking ubiquitin and RNA biology throughout animal evolution.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Microscopía por Crioelectrón , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/ultraestructura , Epítopos , Evolución Molecular , Células HEK293 , Humanos , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/ultraestructura , Modelos Moleculares , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Receptores Inmunológicos/genética , Receptores Inmunológicos/ultraestructura , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/ultraestructura , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/ultraestructura
11.
Cell ; 152(1-2): 276-89, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23273991

RESUMEN

MDA5, a viral double-stranded RNA (dsRNA) receptor, shares sequence similarity and signaling pathways with RIG-I yet plays essential functions in antiviral immunity through distinct specificity for viral RNA. Revealing the molecular basis for the functional divergence, we report here the crystal structure of MDA5 bound to dsRNA, which shows how, using the same domain architecture, MDA5 recognizes the internal duplex structure, whereas RIG-I recognizes the terminus of dsRNA. We further show that MDA5 uses direct protein-protein contacts to stack along dsRNA in a head-to-tail arrangement, and that the signaling domain (tandem CARD), which decorates the outside of the core MDA5 filament, also has an intrinsic propensity to oligomerize into an elongated structure that activates the signaling adaptor, MAVS. These data support a model in which MDA5 uses long dsRNA as a signaling platform to cooperatively assemble the core filament, which in turn promotes stochastic assembly of the tandem CARD oligomers for signaling.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN Bicatenario/metabolismo , Secuencia de Aminoácidos , Humanos , Helicasa Inducida por Interferón IFIH1 , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , ARN Bicatenario/química , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo , Alineación de Secuencia , Difracción de Rayos X
12.
Nature ; 607(7920): 784-789, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859175

RESUMEN

The RNA-editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) limits the accumulation of endogenous immunostimulatory double-stranded RNA (dsRNA)1. In humans, reduced ADAR1 activity causes the severe inflammatory disease Aicardi-Goutières syndrome (AGS)2. In mice, complete loss of ADAR1 activity is embryonically lethal3-6, and mutations similar to those found in patients with AGS cause autoinflammation7-12. Mechanistically, adenosine-to-inosine (A-to-I) base modification of endogenous dsRNA by ADAR1 prevents chronic overactivation of the dsRNA sensors MDA5 and PKR3,7-10,13,14. Here we show that ADAR1 also inhibits the spontaneous activation of the left-handed Z-nucleic acid sensor ZBP1. Activation of ZBP1 elicits caspase-8-dependent apoptosis and MLKL-mediated necroptosis of ADAR1-deficient cells. ZBP1 contributes to the embryonic lethality of Adar-knockout mice, and it drives early mortality and intestinal cell death in mice deficient in the expression of both ADAR and MAVS. The Z-nucleic-acid-binding Zα domain of ADAR1 is necessary to prevent ZBP1-mediated intestinal cell death and skin inflammation. The Zα domain of ADAR1 promotes A-to-I editing of endogenous Alu elements to prevent dsRNA formation through the pairing of inverted Alu repeats, which can otherwise induce ZBP1 activation. This shows that recognition of Alu duplex RNA by ZBP1 may contribute to the pathological features of AGS that result from the loss of ADAR1 function.


Asunto(s)
Adenosina Desaminasa , Inflamación , Proteínas de Unión al ARN , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Adenosina/metabolismo , Adenosina Desaminasa/química , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/metabolismo , Animales , Apoptosis , Enfermedades Autoinmunes del Sistema Nervioso , Caspasa 8/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/prevención & control , Inosina/metabolismo , Intestinos/patología , Ratones , Necroptosis , Malformaciones del Sistema Nervioso , Edición de ARN , ARN Bicatenario , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Piel/patología
13.
Mol Cell ; 76(2): 243-254, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626748

RESUMEN

Self versus non-self discrimination by innate immune sensors is critical for mounting effective immune responses against pathogens while avoiding harmful auto-inflammatory reactions against the host. Foreign DNA and RNA sensors must discriminate between self versus non-self nucleic acids, despite their shared building blocks and similar physicochemical properties. Recent structural and biochemical studies suggest that multiple steps of filament-like assembly are required for the functions of several nucleic acid sensors. Here, we discuss ligand discrimination and oligomerization of RIG-I-like receptors, AIM2-like receptors, and cGAS. We discuss how filament-like assembly allows for robust and accurate discrimination of self versus non-self nucleic acids and how these assemblies enable sensing of multiple distinct features in foreign nucleic acids, including structure, length, and modifications. We also discuss how individual receptors differ in their assembly and disassembly mechanisms and how these differences contribute to the diversity in nucleic acid specificity and pathogen detection strategies.


Asunto(s)
ADN/inmunología , Inmunidad Innata , ARN/inmunología , Transducción de Señal/inmunología , Animales , Proteína 58 DEAD Box/inmunología , Proteínas de Unión al ADN/inmunología , Humanos , Inflamación/metabolismo , Inflamación/patología , Nucleotidiltransferasas/inmunología , Receptores Inmunológicos
14.
Mol Cell ; 76(1): 96-109.e9, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31474572

RESUMEN

Circular RNAs (circRNAs) are prevalent in eukaryotic cells and viral genomes. Mammalian cells possess innate immunity to detect foreign circRNAs, but the molecular basis of self versus foreign identity in circRNA immunity is unknown. Here, we show that N6-methyladenosine (m6A) RNA modification on human circRNAs inhibits innate immunity. Foreign circRNAs are potent adjuvants to induce antigen-specific T cell activation, antibody production, and anti-tumor immunity in vivo, and m6A modification abrogates immune gene activation and adjuvant activity. m6A reader YTHDF2 sequesters m6A-circRNA and is essential for suppression of innate immunity. Unmodified circRNA, but not m6A-modified circRNA, directly activates RNA pattern recognition receptor RIG-I in the presence of lysine-63-linked polyubiquitin chain to cause filamentation of the adaptor protein MAVS and activation of the downstream transcription factor IRF3. CircRNA immunity has considerable parallel to prokaryotic DNA restriction modification system that transforms nucleic acid chemical modification into organismal innate immunity.


Asunto(s)
Adenosina/análogos & derivados , Inmunidad Innata , Melanoma Experimental/terapia , ARN Circular/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina/administración & dosificación , Adenosina/inmunología , Adenosina/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proteína 58 DEAD Box/inmunología , Proteína 58 DEAD Box/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Inmunización , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferones/inmunología , Interferones/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Poliubiquitina/inmunología , Poliubiquitina/metabolismo , Multimerización de Proteína , ARN Circular/administración & dosificación , ARN Circular/metabolismo , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/metabolismo , Receptores Inmunológicos , Ubiquitinación
15.
Mol Cell ; 67(2): 163-164, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28732203

RESUMEN

In this issue of Molecular Cell, two papers by Chen et al. (2017) and Li et al. (2017) describe new insights into circRNA biogenesis and function, connecting circRNAs to innate immune pathways.


Asunto(s)
ARN Helicasas DEAD-box/inmunología , ARN , Antivirales , Humanos , Inmunidad Innata
16.
Crit Rev Food Sci Nutr ; : 1-32, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764334

RESUMEN

Cultured meat is expected to become an important material for future food production; however, contrary to initial expectations, the full-scale industrialization of cultured meat is slow and the actual level and opened technology amount is very limited. This study reviews the publicly available technologies of cultured meat and suggests future developmental directions and research agenda. As a result of analyzing papers, patents, and press releases published over the past 10 years, it was found that cultured meat production technology is still at the prototype production level. This is because most papers published are about culture medium and scaffold development, culture conditions, and there is almost no research on finished cultured meat products. Worldwide, most of the filed patents are for producing cultured meat principles; most of them do not use food-grade materials and are not economically feasible for industrialization. Therefore, future research on the industrialization of cultured meat should focus on effective acquisition technologies for satellite cells; cell lineage and undifferentiated state maintenance technologies; the development of serum-free media and culture devices; the prevention of genetic modification, safety verification, and mass production. Furthermore, basic research on mechanisms and influencing factors related to cultured meat production is warranted.

17.
Semin Cell Dev Biol ; 111: 76-85, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33092958

RESUMEN

TRIM (Tripartite motif) and TRIM-like proteins have emerged as an important class of E3 ligases in innate immunity. Their functions range from activation or regulation of innate immune signaling pathway to direct detection and restriction of pathogens. Despite the importance, molecular mechanisms for many TRIM/TRIM-like proteins remain poorly characterized, in part due to challenges of identifying their substrates. In this review, we discuss several TRIM/TRIM-like proteins in RNA sensing pathways and viral restriction functions. We focus on those containing PRY-SPRY, the domain most frequently used for substrate recognition, and discuss emerging mechanisms that are commonly utilized by several TRIM/TRIM-like proteins to tightly control their interaction with the substrates.


Asunto(s)
Dominio B30.2-SPRY/genética , Proteína 58 DEAD Box/genética , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1/genética , Receptores Inmunológicos/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteína 58 DEAD Box/inmunología , Regulación de la Expresión Génica , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Helicasa Inducida por Interferón IFIH1/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Familia de Multigenes , Receptores Inmunológicos/inmunología , Transducción de Señal , Especificidad por Sustrato , Proteínas de Motivos Tripartitos/química , Proteínas de Motivos Tripartitos/clasificación , Proteínas de Motivos Tripartitos/inmunología , Ubiquitina-Proteína Ligasas/clasificación , Ubiquitina-Proteína Ligasas/inmunología
18.
PLoS Pathog ; 17(12): e1010142, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34929018

RESUMEN

Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in humans. A well-known challenge in the development of a live attenuated RSV vaccine is that interferon (IFN)-mediated antiviral responses are strongly suppressed by RSV nonstructural proteins which, in turn, dampens the subsequent adaptive immune responses. Here, we discovered a novel strategy to enhance innate and adaptive immunity to RSV infection. Specifically, we found that recombinant RSVs deficient in viral RNA N6-methyladenosine (m6A) and RSV grown in m6A methyltransferase (METTL3)-knockdown cells induce higher expression of RIG-I, bind more efficiently to RIG-I, and enhance RIG-I ubiquitination and IRF3 phosphorylation compared to wild-type virion RNA, leading to enhanced type I IFN production. Importantly, these m6A-deficient RSV mutants also induce a stronger IFN response in vivo, are significantly attenuated, induce higher neutralizing antibody and T cell immune responses in mice and provide complete protection against RSV challenge in cotton rats. Collectively, our results demonstrate that inhibition of RSV RNA m6A methylation enhances innate immune responses which in turn promote adaptive immunity.


Asunto(s)
Adenosina/análogos & derivados , ARN Viral , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Inmunidad Adaptativa , Animales , Inmunidad Innata , Metilación , Ratones , Ratas
19.
Crit Rev Food Sci Nutr ; 63(27): 8591-8615, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35466822

RESUMEN

Cultured meat production technology suggested that can solve the problems of traditional meat production such as inadequate breeding environment, wastewater, methane gas generation, and animal ethics issues. Complementing cultured meat production methods, sales and safety concerns will make the use of cultured meat technology easier. This review contextualizes the commercialization status of cultured meat and the latest technologies and challenges associated with its production. Investigation was conducted on materials and basic cell culture technique for cultured meat culture is presented. The development of optimal cultured meat technology through these studies will be an innovative leap in food technology. The process of obtaining cells from animal muscle, culturing cells, and growing cells into meat are the basic processes of cultured meat production. The substances needed to production of cultured meat were antibiotics, digestive enzymes, basal media, serum or growth factors. Although muscle cells have been produced closer to meat due to the application of scaffolds materials and 3 D printing technology, still a limit to reducing production costs enough to be used as foods. In addition, developing edible materials is also a challenge because the materials used to produce cultured meat are still not suitable for food sources.


Asunto(s)
Carne , Tecnología , Animales , Impresión Tridimensional , Antibacterianos , Técnicas de Cultivo de Célula
20.
Mol Cell ; 58(3): 541-548, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25891073

RESUMEN

The vertebrate antiviral innate immune system is often considered to consist of two distinct groups of proteins: pattern recognition receptors (PRRs) that detect viral infection and induce the interferon (IFN) signaling, and effectors that directly act against viral replication. Accordingly, previous studies on PRRs, such as RIG-I and MDA5, have primarily focused on their functions in viral double-stranded RNA (dsRNA) detection and consequent antiviral signaling. We report here that both RIG-I and MDA5 efficiently displace viral proteins pre-bound to dsRNA in a manner dependent on their ATP hydrolysis, and that this activity assists a dsRNA-dependent antiviral effector protein, PKR, and allows RIG-I to promote MDA5 signaling. Furthermore, truncated RIG-I/MDA5 lacking the signaling domain, and hence the IFN stimulatory activity, displaces viral proteins and suppresses replication of certain viruses in an ATP-dependent manner. Thus, this study reveals novel "effector-like" functions of RIG-I and MDA5 that challenge the conventional view of PRRs.


Asunto(s)
Adenosina Trifosfato/metabolismo , ARN Helicasas DEAD-box/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Antivirales/metabolismo , Secuencia de Bases , Western Blotting , Línea Celular Tumoral , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , Células HEK293 , Humanos , Helicasa Inducida por Interferón IFIH1 , Interferón beta/genética , Interferón beta/metabolismo , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Fosforilación , Interferencia de ARN , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Receptores Inmunológicos , Receptores de Reconocimiento de Patrones/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virosis/genética , Virosis/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA