Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7968): 46-51, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37225992

RESUMEN

In superconductors possessing both time and inversion symmetries, the Zeeman effect of an external magnetic field can break the time-reversal symmetry, forming a conventional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state characterized by Cooper pairings with finite momentum1,2. In superconductors lacking (local) inversion symmetry, the Zeeman effect may still act as the underlying mechanism of FFLO states by interacting with spin-orbit coupling (SOC). Specifically, the interplay between the Zeeman effect and Rashba SOC can lead to the formation of more accessible Rashba FFLO states that cover broader regions in the phase diagram3-5. However, when the Zeeman effect is suppressed because of spin locking in the presence of Ising-type SOC, the conventional FFLO scenarios are no longer effective. Instead, an unconventional FFLO state is formed by coupling the orbital effect of magnetic fields with SOC, providing an alternative mechanism in superconductors with broken inversion symmetries6-8. Here we report the discovery of such an orbital FFLO state in the multilayer Ising superconductor 2H-NbSe2. Transport measurements show that the translational and rotational symmetries are broken in the orbital FFLO state, providing the hallmark signatures of finite-momentum Cooper pairings. We establish the entire orbital FFLO phase diagram, consisting of a normal metal, a uniform Ising superconducting phase and a six-fold orbital FFLO state. This study highlights an alternative route to achieving finite-momentum superconductivity and provides a universal mechanism to preparing orbital FFLO states in similar materials with broken inversion symmetries.

2.
Proc Natl Acad Sci U S A ; 119(45): e2121092119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36279424

RESUMEN

Animals migrate in response to seasonal environments, to reproduce, to benefit from resource pulses, or to avoid fluctuating hazards. Although climate change is predicted to modify migration, only a few studies to date have demonstrated phenological shifts in marine mammals. In the Arctic, marine mammals are considered among the most sensitive to ongoing climate change due to their narrow habitat preferences and long life spans. Longevity may prove an obstacle for species to evolutionarily respond. For species that exhibit high site fidelity and strong associations with migration routes, adjusting the timing of migration is one of the few recourses available to respond to a changing climate. Here, we demonstrate evidence of significant delays in the timing of narwhal autumn migrations with satellite tracking data spanning 21 y from the Canadian Arctic. Measures of migration phenology varied annually and were explained by sex and climate drivers associated with ice conditions, suggesting that narwhals are adopting strategic migration tactics. Male narwhals were found to lead the migration out of the summering areas, while females, potentially with dependent young, departed later. Narwhals are remaining longer in their summer areas at a rate of 10 d per decade, a similar rate to that observed for climate-driven sea ice loss across the region. The consequences of altered space use and timing have yet to be evaluated but will expose individuals to increasing natural changes and anthropogenic activities on the summering areas.


Asunto(s)
Cambio Climático , Cubierta de Hielo , Animales , Femenino , Masculino , Canadá , Regiones Árticas , Estaciones del Año , Ecosistema , Ballenas
3.
Proc Natl Acad Sci U S A ; 118(7)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33579820

RESUMEN

The interplay between charge order and d-wave superconductivity in high-[Formula: see text] cuprates remains an open question. While mounting evidence from spectroscopic probes indicates that charge order competes with superconductivity, to date little is known about the impact of charge order on charge transport in the mixed state, when vortices are present. Here we study the low-temperature electrical resistivity of three distinctly different cuprate families under intense magnetic fields, over a broad range of hole doping and current excitations. We find that the electronic transport in the doping regime where long-range charge order is known to be present is characterized by a nonohmic resistivity, the identifying feature of an anomalous vortex liquid. The field and temperature range in which this nonohmic behavior occurs indicates that the presence of long-range charge order is closely related to the emergence of this anomalous vortex liquid, near a vortex solid boundary that is defined by the excitation current in the [Formula: see text] 0 limit. Our findings further suggest that this anomalous vortex liquid, a manifestation of fragile superconductivity with a suppressed critical current density, is ubiquitous in the high-field state of charge-ordered cuprates.

4.
J Fish Biol ; 104(6): 1732-1742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38445757

RESUMEN

The oceanic whitetip shark, Carcharhinus longimanus, is a highly migratory, epipelagic top predator that is classified as critically endangered. Although this species is widely distributed throughout the world's tropical oceans, its assumed mobility and pelagic behavior limit studies to derive required lifetime data for management. To address this data deficiency, we assessed variation in the habitat use of C. longimanus by oceanic region and over ontogeny through time series trace element and stable isotope values conserved along the vertebral centra (within translucent annulus bands) of 13 individuals sampled from the central and eastern Pacific Ocean. Elemental ratios of Mg:Ca, Mn:Ca, Fe:Ca, Zn:Ca, and Ba:Ca varied significantly among individuals from both sampling regions while principal component analysis of combined standardized elements revealed minimal overlap between the two areas. The limited overlap was also in agreement with stable isotope niches. These findings indicate that C. longimanus exhibit a degree of fidelity to sampling regions but also connectivity in a proportion of the population. The relatively stable Sr:Ca ratio supports its occurrence in oceanic environments. The decreasing trends in Ba:Ca, Mn:Ca, and Zn:Ca ratios, as well as in carbon and nitrogen isotope values along vertebral transects, indicate that C. longimanus undergo a directional habitat shift with age. Combined elemental and stable isotope values in vertebral centra provide a promising tool for elucidating lifetime data for complex pelagic species. For C. longimanus, management will need to consider subpopulation movement behavior in the Pacific to minimize the potential for localized depletions. Further work is now required to sample individuals across the entire Pacific and to link these findings with genetic and movement data to define population structure.


Asunto(s)
Ecosistema , Tiburones , Columna Vertebral , Oligoelementos , Animales , Océano Pacífico , Oligoelementos/análisis , Femenino , Masculino , Isótopos/análisis
5.
J Fish Biol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632858

RESUMEN

Rock hind (Epinephelus adscensionis) and spotted moray (Gymnothorax moringa) are ubiquitous mesopredators that co-occur in the nearshore waters of Ascension Island in the South Atlantic Ocean, where they have significant cultural and subsistence value, but management of their non-commercial take is limited. This isolated volcanic system is home to high biomass and low species diversity, which poses two key questions: How can two mesopredators that perform similar ecological roles coexist? And if these two species are so ecologically similar, can they be managed using the same approach? Here, we combined acoustic telemetry, stomach content analysis, and stable isotope analysis to (i) explore space use and diet choices within and between these two species and (ii) to assess appropriate species-specific management options. Although rock hind had high residency and small calculated home ranges (0.0001-0.3114 km2), spotted moray exhibited shorter periods of residency (<3 months) before exiting the array. Vertical space use differed significantly across the 20-month tracking period, with individual differences in vertical space observed for both species. A hierarchical generalized additive model using 12-h averaged depth data identified that rock hind occurred lower in the water column than spotted moray, with both species occupying moderately deeper depths at night versus day (+1.6% relative depth). Spotted moray depth was also significantly predicted by lunar illumination. Aggregating samples by species and tissue type, Bayesian ecological niche modeling identified a 53.14%-54.15% and 78.02%-97.08% probability of niche overlap from fin clip and white muscle, respectively, whereas limited stomach content data indicated a preference for piscivorous prey. Variability in niche breadth between years suggests these species may exploit a range of prey items over time. These findings indicate that although these two species perform a similar ecological role by feeding on prey occupying the same trophic levels, subtle differences in movement behaviors between them suggest a one-rule-fits-all management approach is not likely the most effective option.

6.
Proc Biol Sci ; 290(1996): 20230262, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040803

RESUMEN

Understanding the factors shaping patterns of ecological resilience is critical for mitigating the loss of global biodiversity. Throughout aquatic environments, highly mobile predators are thought to serve as important vectors of energy between ecosystems thereby promoting stability and resilience. However, the role these predators play in connecting food webs and promoting energy flow remains poorly understood in most contexts. Using carbon and nitrogen isotopes, we quantified the use of several prey resource pools (small oceanic forage, large oceanics, coral reef, and seagrass) by 17 species of elasmobranch fishes (n = 351 individuals) in The Bahamas to determine their functional diversity and roles as ecosystem links. We observed remarkable functional diversity across species and identified four major groups responsible for connecting discrete regions of the seascape. Elasmobranchs were responsible for promoting energetic connectivity between neritic, oceanic and deep-sea ecosystems. Our findings illustrate how mobile predators promote ecosystem connectivity, underscoring their functional significance and role in supporting ecological resilience. More broadly, strong predator conservation efforts in developing island nations, such as The Bahamas, are likely to yield ecological benefits that enhance the resilience of marine ecosystems to combat imminent threats such as habitat degradation and climate change.


Asunto(s)
Ecosistema , Elasmobranquios , Animales , Arrecifes de Coral , Biodiversidad , Peces
7.
Oecologia ; 202(3): 601-616, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37488308

RESUMEN

Within and among species variation in trophic and habitat shifts with body size can indicate the potential adaptive capacity of species to ecosystem change. In Arctic coastal ecosystems, which experience dramatic seasonal shifts and are undergoing rapid change, quantifying the trophic flexibility of coastal fishes with different migratory tactics has received limited attention. We examined the relationships among body length and condition (Fulton's K, phase angle from Bioelectrical Impedance Analysis) with trophic and habitat shifts (differences in δ15N and δ13C between blood tissues with different turnover rates) of two abundant and culturally important species, anadromous Arctic char (Salvelinus alpinus, n = 38) and sedentary Greenland cod (Gadus ogac, n = 65) during summer in coastal marine waters near Ulukhaktok, Northwest Territories, Canada. Habitat shifts (δ13C) increased with length (i.e., pelagic to benthic-littoral) and crossed-equilibrium (zero) at mid-sizes for both species. Seasonal trophic shifts (δ15N) were generally positive (i.e., increasing trophic level) for Arctic char and negative for Greenland cod. As hypothesised, intra-individual variation in size-based trophic shifts (δ15N-length residuals) increased with length for Arctic char. However, there were no trends with length in Greenland cod. Our findings highlight the importance of flexibility through ontogeny and mobility for Arctic char, whereas Greenland cod were generalist to localized prey and habitat across all sizes. The significant effect of body condition (phase angle) on size-based trophic shifts in Arctic char, and size-based habitat shifts in Greenland cod, highlight the potential trade-offs of contrasting life history strategies and capacity for ontogenetic niche plasticity.


Asunto(s)
Ecosistema , Estado Nutricional , Animales , Regiones Árticas , Canadá , Trucha
8.
J Hered ; 114(2): 152-164, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36477342

RESUMEN

Inferences made from molecular data support regional stock assessment goals by providing insights into the genetic population dynamics of enigmatic species. Population genomics metrics, such as genetic diversity and population connectivity, serve as useful proxies for species health and stability. Sleeper sharks (genus Somniosus) are ecologically important deep-sea predators, estimated to reach ages of 250 to 300 yr and taking decades to reach sexual maturity. The subgenus Somniosus (Somniosus) is comprised of 3 species: S. pacificus, S. microcephalus, and S. antarcticus. Given the life history strategy of somniosids, they are vulnerable to overfishing and population declines. Further, data to assess the stocks of these species are limited. To address this deficiency, we used the reduced representation library method Restriction-site Associated DNA sequencing (RADseq) to conduct phylogenomic and population genomics analyses, providing novel information for use in stock assessments. Our results strongly support the species status of S. microcephalus (N = 79), but recover S. antarcticus (N = 2) intermixed within the S. pacificus (N = 170) clade. Population genomics analyses reveal genetic homogeneity within S. pacificus and S. microcephalus, and estimates of effective population size were in the hundreds for both species. Kinship analysis identified 2 first-degree relative pairs within our dataset (1 within each species). Our results contribute new information for stock assessments of these uniquely long-lived species by providing the strongest molecular evidence to date for the synonymization of S. antarcticus and S. pacificus, as well as estimating population genomic metrics for each supported species within the Somniosus (Somniosus) subgenus.


Asunto(s)
Conservación de los Recursos Naturales , Tiburones , Animales , Tiburones/genética , Explotaciones Pesqueras , Ecología
9.
Dis Aquat Organ ; 154: 131-139, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37410432

RESUMEN

We report the detection of an alphaherpesvirus infecting an adult female narwhal Monodon monoceros captured live during a tagging project in Tremblay Sound, Nunavut, Canada, in August 2018. The individual had 2 open wounds on the dorsum but appeared in good overall health. A blowhole swab was collected, and subsequent virus isolation was performed using a beluga whale primary cell line. Non-syncytial cytopathic effects were seen, in contrast to syncytial cytopathic effects described for monodontid alphaherpesvirus 1 (MoAHV1) isolates previously recovered from beluga whales Delphinapterus leucas from Alaska, USA, and the Northwest Territories, Canada. Next-generation sequencing was performed on a sequencing library generated from the DNA of the viral isolate and the analysis of the assembled contigs permitted the recovery of 6 genes, conserved in all members of the family Orthoherpesviridae, for downstream genetic and phylogenetic analyses. BLASTN (basic local alignment search tool, searching nucleotide databases using a nucleotide query) analyses of the narwhal herpesvirus conserved genes showed the highest nucleotide identities to MoAHV1, ranging between 88.5 and 96.8%. A maximum likelihood phylogenetic analysis based on concatenation of the 6 conserved herpesviruses amino acid alignments revealed the narwhal herpesvirus (NHV) to be the closest relative to MoAHV1, forming a clade within the subfamily Alphaherpesvirinae, genus Varicellovirus. NHV is the first alphaherpesvirus characterized from a narwhal and represents a new viral species, which we propose to be known as Varicellovirus monodontidalpha2. Further research is needed to determine the prevalence and potential clinical impacts of this alphaherpesvirus infection in narwhals.


Asunto(s)
Alphaherpesvirinae , Herpesviridae , Femenino , Animales , Ballenas , Filogenia , Canadá/epidemiología , Alphaherpesvirinae/genética , Regiones Árticas , Nucleótidos/metabolismo
10.
J Fish Biol ; 103(1): 189-193, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37102263

RESUMEN

A solitary Anelasma squalicola specimen was collected from the cloaca of a Greenland shark (Somniosus microcephalus), the first time this association has been recorded. The specimen's identity was confirmed through morphological and genetic assessment (mitochondrial markers: COI and control region). A. squalicola is a species typically associated with deep-sea lantern sharks (Etmopteridae) and, until the present observation, had never been observed at a sexually mature size in the absence of a mating partner. Given the reported negative effects of this parasite on its hosts, monitoring Greenland sharks for additional cases is recommended.


Asunto(s)
Parásitos , Tiburones , Thoracica , Animales , Thoracica/genética , Canadá , Cazón , Tiburones/genética , Tiburones/parasitología , Groenlandia
11.
J Fish Biol ; 102(1): 27-43, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36153814

RESUMEN

Understanding the ecological role of species with overlapping distributions is central to inform ecosystem management. Here we describe the diet, trophic level and habitat use of three sympatric stingrays, Hypanus guttatus, H. marianae and H. berthalutzae, through combined stomach content and stable isotope (δ13 C and δ15 N) analyses. Our integrated approach revealed that H. guttatus is a mesopredator that feeds on a diverse diet of benthic and epibenthic marine and estuarine organisms, principally bivalve molluscs, Alpheus shrimp and teleost fishes. Isotopic data supported movement of this species between marine and estuarine environments. H. berthalutzae is also a marine generalist feeder, but feeds primarily on teleost fishes and cephalopods, and consequently occupies a higher trophic level. In contrast, H. marianae is a mesopredator specialized on shrimps and polychaetas occurring only in the marine environment and occupying a low niche breadth. While niche overlap occurred, the three stingrays utilized the same prey resources at different rates and occupied distinct trophic niches, potentially limiting competition for resources and promoting coexistence. These combined data demonstrate that these three mesopredators perform different ecological roles in the ecosystems they occupy, limiting functional redundancy.


Asunto(s)
Decápodos , Rajidae , Animales , Ecosistema , Cadena Alimentaria , Brasil , Estado Nutricional , Peces , Crustáceos
12.
J Zoo Wildl Med ; 54(1): 119-130, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36971636

RESUMEN

Narwhals (Monodon monoceros) are increasingly exposed to anthropogenic disturbances that may increase their stress levels with unknown consequences for the overall population dynamics. The validation and measurement of chronic stress biomarkers could contribute toward improved understanding and conservation efforts for this species. Dehydroepiandrosterone (DHEA) and its sulfated metabolite DHEA-S are collectively referred to as DHEA(S). Serum DHEA(S) concentrations combined in ratios with cortisol [cortisol/DHEA(S)] have been shown to be promising indicators of chronic stress in humans, domestic animals, and wildlife. During field tagging in 2017 and 2018 in Baffin Bay, Nunavut, Canada, 14 wild narwhals were sampled at the beginning and end of the capture-tagging procedures. Serum DHEA(S) were measured with commercially available competitive enzyme-linked immunosorbent assays (ELISA) developed for humans. A partial validation of the ELISA assays was performed by the determination of the intra-assay coefficient of variation, confirmation of the DHEA(S) dilutional linearity, and the calculation of the percentage of recovery. Mean values (nanograms per milliliter ± standard error of the mean) of narwhal serum cortisol, DHEA(S), and cortisol/DHEA(S) ratios, at the beginning and at the end of handling, respectively, are reported (cortisol = 30.74 ± 4.87 and 41.83 ± 4.83; DHEA = 1.01 ± 0.52 and 0.99 ± 0.50; DHEA-S = 8.72 ± 1.68 and 7.70 ± 1.02; cortisol/DHEA = 75.43 ± 24.35 and 84.41 ± 11.76, and cortisol/DHEA-S = 4.16 ± 1.07 and 6.14 ± 1.00). Serum cortisol and cortisol/DHEA-S were statistically higher at the end of the capture (P= 0.024 and P= 0.035, respectively). Moreover, serum cortisol at the end of handling was positively correlated to total body length (P = 0.042) and tended to be higher in males (P = 0.086). These assays proved easy to perform, rapid, and suitable for measuring serum DHEA(S) of narwhals and that calculated cortisol/DHEA(S) are potential biomarkers for chronic stress in narwhals and possibly other cetaceans.


Asunto(s)
Deshidroepiandrosterona , Hidrocortisona , Humanos , Masculino , Animales , Ballenas/metabolismo , Animales Salvajes/metabolismo , Biomarcadores
13.
J Exp Biol ; 225(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35258589

RESUMEN

Field metabolic rate (FMR) is a holistic measure of metabolism representing the routine energy utilization of a species living within a specific ecological context, thus providing insight into its ecology, fitness and resilience to environmental stressors. For animals that cannot be easily observed in the wild, FMR can also be used in concert with dietary data to quantitatively assess their role as consumers, improving understanding of the trophic linkages that structure food webs and allowing for informed management decisions. Here, we modelled the FMR of Greenland sharks (Somniosus microcephalus) equipped with biologger packages or pop-up archival satellite tags (PSATs) in two coastal inlets of Baffin Island (Nunavut) using metabolic scaling relationships for mass, temperature and activity. We estimated that Greenland sharks had an overall mean (±s.d.) FMR of 21.67±2.30 mg O2 h-1 kg-0.84 (n=30; 1-4 day accelerometer package deployments) while residing inside these cold-water fjord systems in the late summer, and 25.48±0.47 mg O2 h-1 kg-0.84 (n=6; PSATs) over an entire year. When considering prey consumption rate, an average shark in these systems (224 kg) requires a maintenance ration of 61-193 g of fish or marine mammal prey daily. As Greenland sharks are a lethargic polar species, these low FMR estimates, and corresponding prey consumption estimates, suggest they require very little energy to sustain themselves under natural conditions. These data provide the first characterization of the energetics and consumer role of this vulnerable and understudied species in the wild, which is essential given growing pressures from climate change and expanding commercial fisheries in the Arctic.


Asunto(s)
Tiburones , Animales , Regiones Árticas , Cazón , Explotaciones Pesqueras , Cadena Alimentaria , Groenlandia , Mamíferos , Tiburones/metabolismo
14.
Oecologia ; 200(3-4): 503-514, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36229693

RESUMEN

Organisms must overcome environmental limitations to optimize their investment in life history stages to maximize fitness. Human-induced climate change is generating increasingly variable environmental conditions, impacting the demography of prey items and, therefore, the ability of consumers to successfully access resources to fuel reproduction. While climate change effects are especially pronounced in the Arctic, it is unknown whether organisms can adjust foraging decisions to match such changes. We used a 9-year blood plasma δ13C and δ15N data set from over 700 pre-breeding Arctic common eiders (Somateria mollissima) to assess breeding-stage and inter-annual variation in isotopic niche, and whether inferred trophic flexibility was related to colony-level breeding parameters and environmental variation. Eider blood isotope values varied both across years and breeding stages, and combined with only weak relationships between isotopic metrics and environmental conditions suggests that pre-breeding eiders can make flexible foraging decisions to overcome constraints imposed by local abiotic conditions. From an investment perspective, an inshore, smaller isotopic niche predicted a greater probability to invest in reproduction, but was not related to laying phenology. Proximately, our results provide evidence that eiders breeding in the Arctic can alter their diet at the onset of reproductive investment to overcome increases in the energetic demand of egg production. Ultimately, Arctic pre-breeding common eiders may have the stage- and year-related foraging flexibility to respond to abiotic variation to reproduce successfully.


Asunto(s)
Aves , Reproducción , Animales , Humanos , Regiones Árticas
15.
J Fish Biol ; 101(6): 1441-1451, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36097690

RESUMEN

Variable resource use and responses to environmental conditions can lead to phenotypic diversity and distinct morphotypes within salmonids, including Arctic char (Salvelinus alpinus). Despite the cultural and economic importance of Arctic char in the Inuvialuit Settlement Region (ISR), limited data exist on the extent and presence of morphological diversity in this region. This is of concern for management given climate change impacts on regional fish populations. The authors investigated morphological diversity in anadromous Arctic char sampled during their summer marine migration-residency period when seasonal harvesting occurs in a coastal mixed-stock fishery. Geometric morphometric analysis was conducted using digital photographs of live Arctic char (n = 103) of which a sub-set was subsequently implanted with acoustic transmitters (n = 90) and released, and their overwintering lakes determined using active acoustic telemetry surveys. Twenty-three morphological landmarks were established and overlaid on digital images, and nine linear measurements of the body and head were recorded. Principle component analysis and K-means clustering based on linear measurements categorised fish into three morphotypes: slender body and slim head (n = 31), small and short head with a small mouth (n = 46) and elongated head shape with large mouth (n = 26). Tagged individuals of the three morphotypes occupied all lakes with no distinction observed. The three Arctic char morphotypes detected in this coastal mixed-stock fishery could represent adaptation to specific feeding-movement behaviours potentially tied to juvenile residency in freshwater systems, efficient exploitation of the marine prey pulse, or are relicts from ancestral types. To the authors' knowledge, this study is the first to identify distinct Arctic char morphotypes occurring in sympatry in the marine environment. Identifying phenotypic diversity will assist management to promote the sustainability of this regional fishery.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Trucha , Lagos , Cambio Climático , Estaciones del Año , Regiones Árticas
16.
Proc Natl Acad Sci U S A ; 115(14): 3551-3556, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555774

RESUMEN

Many recent studies show that superconductivity not only exists in atomically thin monolayers but can exhibit enhanced properties such as a higher transition temperature and a stronger critical field. Nevertheless, besides being unstable in air, the weak tunability in these intrinsically metallic monolayers has limited the exploration of monolayer superconductivity, hindering their potential in electronic applications (e.g., superconductor-semiconductor hybrid devices). Here we show that using field effect gating, we can induce superconductivity in monolayer WS2 grown by chemical vapor deposition, a typical ambient-stable semiconducting transition metal dichalcogenide (TMD), and we are able to access a complete set of competing electronic phases over an unprecedented doping range from band insulator, superconductor, to a reentrant insulator at high doping. Throughout the superconducting dome, the Cooper pair spin is pinned by a strong internal spin-orbit interaction, making this material arguably the most resilient superconductor in the external magnetic field. The reentrant insulating state at positive high gating voltages is attributed to localization induced by the characteristically weak screening of the monolayer, providing insight into many dome-like superconducting phases observed in field-induced quasi-2D superconductors.

17.
J Fish Biol ; 98(3): 829-841, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33251592

RESUMEN

Stable-isotope analysis (SIA) provides a valuable tool to address complex questions pertaining to elasmobranch ecology. Liver, a metabolically active, high turnover tissue (~166 days for 95% turnover), has the potential to reveal novel insights into recent feeding/movement behaviours of this diverse group. To date, limited work has used this tissue, but ecological application of SIA in liver requires consideration of tissue preparation techniques given the potential for high concentrations of urea and lipid that could bias δ13 C and δ15 N values (i.e., result in artificially lower δ13 C and δ15 N values). Here we investigated the effectiveness of (a) deionized water washing (WW) for urea removal from liver tissue and (b) chloroform-methanol for extraction of lipids from this lipid rich tissue. We then (a) established C:N thresholds for deriving ecologically relevant liver isotopic values given complications of removing all lipid and (b) undertook a preliminary comparison of δ13 C values between tissue pairs (muscle and liver) to test if observed isotopic differences correlated with known movement behaviour. Tests were conducted on four large shark species: the dusky (DUS, Carcharhinus obscurus), sand tiger (RAG, Carcharias taurus), scalloped hammerhead (SCA, Sphyrna lewini) and white shark (GRE, Carcharodon carcharias). There was no significant difference in δ15 N values between lipid-extracted (LE) liver and lipid-extracted/water washed (WW) treatments, however, WW resulted in significant increases in %N, δ13 C and %C. Following lipid extraction (repeated three times), some samples were still biased by lipids. Our species-specific "C:N thresholds" provide a method to derive ecologically viable isotope data given the complexities of this lipid rich tissue (C:N thresholds of 4.0, 3.6, 4.7 and 3.9 for DUS, RAG, SCA and GRE liverLEWW tissue, respectively). The preliminary comparison of C:N threshold corrected liver and muscle δ13 C values corresponded with movement/habitat behaviours for each shark; minor differences in δ13 C values were observed for known regional movements of DUS and RAG (δ13 CDiffs = 0.24 ± 0.99‰ and 0.57 ± 0.38‰, respectively), while SCA and GRE showed greater differences (1.24 ± 0.63‰ and 1.08 ± 0.71‰, respectively) correlated to large-scale movements between temperate/tropical and pelagic/coastal environments. These data provide an approach for the successful application of liver δ13 C and δ15 N values to examine elasmobranch ecology.


Asunto(s)
Isótopos de Carbono/análisis , Técnicas de Química Analítica/veterinaria , Conducta Alimentaria/fisiología , Hígado/química , Isótopos de Nitrógeno/análisis , Animales , Ecosistema , Lípidos/química , Músculos/química , Tiburones/metabolismo , Especificidad de la Especie
18.
Ecol Appl ; 30(3): e02050, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31821656

RESUMEN

Anthropogenic noise associated with shipping has emerged as a major disruptor of aquatic animal behavior worldwide. The Arctic marine realm has historically experienced little noise-generating human activity; however, the continual loss of sea ice has facilitated a dramatic increase in shipping activity. Here, we use a combination of acoustic telemetry and modeling of ship noise to examine the temporospatial habitat use of key Arctic forage fish, Arctic cod (Boreogadus saida) in the presence and absence of vessels in Resolute Bay, Nunavut, Canada. The presence and movement of vessels induced a horizontal shift in the home ranges of Arctic cod with low core overlap when compared to periods without vessel activity. Home range displacement occurred near the vessel. Individuals also altered their swimming behaviors in response to vessel presence with searching decreasing and travelling increasing in proportion. Results indicate that Arctic cod perceive vessel noise and presence as a threat and react by moving away and decreasing exploratory activities. These changes in fish behavior also coincide with the critical open water feeding period suggesting an interruption in exploitation of important and seasonally abundant food resources, and carry broader implications for dependent seabirds and marine mammals, and indirectly for all Arctic indigenous peoples' subsistence and long-term cultural traditions. Our study implies that strategic management is required for aquatic acoustic disturbance as an environmental stressor in the Arctic marine ecosystem, and highlights ecologically and socially important impacts that require timely conservation action.


Asunto(s)
Ecosistema , Navíos , Animales , Regiones Árticas , Canadá , Peces , Humanos
19.
J Anim Ecol ; 89(1): 146-160, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778207

RESUMEN

Interactions between animals structure food webs and regulate ecosystem function and productivity. Quantifying subsurface behavioural interactions among marine organisms is challenging, but technological advances are promoting novel opportunities. Here, we present a framework to estimate when there is a high likelihood that aquatic animal subsurface interactions occur and test for a movement-related behavioural response to those interactions over short temporal scales (days) using a novel multi-sensor biologging package on a large marine predator, the Greenland shark (Somniosus microcephalus). We deployed a recoverable biologging package combining a VEMCO Mobile Transceiver (VMT), accelerometer and a temperature-depth tag to quantitatively assess fine-scale behaviour during detection events, that is when sharks carrying the novel VMT package (animalR , n = 3) detected sharks independently tagged with transmitters in the system (animalT , n = 29). Concurrently, we developed simulations to estimate the distances between animalR and animalT by accounting for their swim speed, the estimated detection efficiency of the VMT and the number of consecutive transmissions recorded. Accelerometer-derived activity indices were then used as a means to test for response to potential interactions when animals are expected to be in close proximity. Based on this approach, the three VMT-equipped Greenland sharks exhibited higher body acceleration and greater depth changes during detections, suggesting a potential behavioural response to the presence of other sharks. A generalized additive model indicated a moderate increasing relationship in activity associated with a greater number of animalT detections. Through the proposed framework, detection events with varying probabilities of interaction likelihoods can be derived and those data isolated and explicitly tested using acceleration data to quantify behavioural interactions. Through inputting known parameters for a species of interest, the framework presented is applicable for all aquatic taxa and can guide future study design.


Asunto(s)
Ecosistema , Tiburones , Acelerometría , Acústica , Animales , Probabilidad , Telemetría
20.
Oecologia ; 192(4): 1111-1126, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32179976

RESUMEN

Calculation of dietary niche characteristics using stable isotopes has become a popular approach to understand the functional role of taxa across food webs. An underlying assumption of this approach is that stable isotopes accurately reflect the dietary breadth of a species over a temporal duration defined by tissue-specific isotopic turnover rates. In theory, dietary niche estimates derived from fast turnover rate tissues (e.g., blood plasma and liver) may augment stomach content-derived estimates more agreeably than slower turnover rate tissues (e.g., muscle or fin). We tested this hypothesis by comparing commonly used dietary niche estimates derived from stomach contents (nicheSCA: Levins', Shannon-Wiener's, and Smith's), with those estimated using stable isotopes [nicheSIA: standard ellipse area (SEA), convex hull total area (TA), theta (θ), and ellipse eccentricity (E)] of liver and muscle tissue. Model species were three large-bodied sharks: white (Carcharodon carcharias), dusky (Carcharhinus obscurus), and scalloped hammerhead (Sphyrna lewini). Within-technique comparisons for nicheSCA and nicheSIA metrics (i.e., SEA vs. TA) were often correlated; however, we did not observe any statistically significant correlations between nicheSCA and liver/muscle tissue nicheSIA (i.e., Levins' vs. SEA). We conclude that nicheSCA and nicheSIA do not provide comparable estimates of dietary niche, at least for the three predator species examined. This fundamental discrepancy highlights technique-specific limitations to estimating organismal dietary niche and identifies a need for the use of clearly defined niche metrics, i.e., the standardized use and reporting of the term isotopic niche as proposed by Newsome et al. (Front Ecol Environ 5:429-436, 2007). Finally, further investigation into the factors underpinning nicheSIA is required to better contextualize this popular ecological metric when compared to nicheSCA.


Asunto(s)
Contenido Digestivo , Tiburones , Animales , Isótopos de Carbono , Cadena Alimentaria , Isótopos de Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA