RESUMEN
Problem: Direct application of digital health technologies from high-income settings to low- and middle-income countries may be inappropriate due to challenges around data availability, implementation and regulation. Hence different approaches are needed. Approach: Within the Viet Nam ICU Translational Applications Laboratory project, since 2018 we have been developing a wearable device for individual patient monitoring and a clinical assessment tool to improve dengue disease management. Working closely with local staff at the Hospital for Tropical Diseases, Ho Chi Minh City, we developed and tested a prototype of the wearable device. We obtained perspectives on design and use of the sensor from patients. To develop the assessment tool, we used existing research data sets, mapped workflows and clinical priorities, interviewed stakeholders and held workshops with hospital staff. Local setting: In Viet Nam, a lower middle-income country, the health-care system is in the nascent stage of implementing digital health technologies. Relevant changes: Based on patient feedback, we are altering the design of the wearable sensor to increase comfort. We built the user interface of the assessment tool based on the core functionalities selected by workshop attendees. The interface was subsequently tested for usability in an iterative manner by the clinical staff members. Lessons learnt: The development and implementation of digital health technologies need an interoperable and appropriate plan for data management including collection, sharing and integration. Engagements and implementation studies should be conceptualized and conducted alongside the digital health technology development. The priorities of end-users, and understanding context and regulatory landscape are crucial for success.
Asunto(s)
Inteligencia Artificial , Atención a la Salud , Humanos , Vietnam , Factores de RiesgoRESUMEN
Diphtheria is a life-threatening, vaccine-preventable disease caused by toxigenic Corynebacterium bacterial species that continues to cause substantial disease and death worldwide, particularly in vulnerable populations. Further outbreaks of vaccine-preventable diseases are forecast because of health service disruptions caused by the coronavirus disease pandemic. Diphtheria causes a spectrum of clinical disease, ranging from cutaneous forms to severe respiratory infections with systemic complications, including cardiac and neurologic. In this synopsis, we describe a case of oropharyngeal diphtheria in a 7-year-old boy in Vietnam who experienced severe myocarditis complications. We also review the cardiac complications of diphtheria and discuss how noninvasive bedside imaging technologies to monitor myocardial function and hemodynamic parameters can help improve the management of this neglected infectious disease.
Asunto(s)
Corynebacterium diphtheriae , Difteria , Miocarditis , Niño , Corynebacterium , Difteria/diagnóstico , Difteria/tratamiento farmacológico , Difteria/epidemiología , Humanos , Masculino , Miocarditis/diagnóstico , Miocarditis/epidemiología , Vietnam/epidemiologíaRESUMEN
BACKGROUND: Dengue shock syndrome (DSS) is one of the major clinical phenotypes of severe dengue. It is defined by significant plasma leak, leading to intravascular volume depletion and eventually cardiovascular collapse. The compensatory reserve Index (CRI) is a new physiological parameter, derived from feature analysis of the pulse arterial waveform that tracks real-time changes in central volume. We investigated the utility of CRI to predict recurrent shock in severe dengue patients admitted to the ICU. METHODS: We performed a prospective observational study in the pediatric and adult intensive care units at the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. Patients were monitored with hourly clinical parameters and vital signs, in addition to continuous recording of the arterial waveform using pulse oximetry. The waveform data was wirelessly transmitted to a laptop where it was synchronized with the patient's clinical data. RESULTS: One hundred three patients with suspected severe dengue were recruited to this study. Sixty-three patients had the minimum required dataset for analysis. Median age was 11 years (IQR 8-14 years). CRI had a negative correlation with heart rate and moderate negative association with blood pressure. CRI was found to predict recurrent shock within 12 h of being measured (OR 2.24, 95% CI 1.54-3.26), P < 0.001). The median duration from CRI measurement to the first recurrent shock was 5.4 h (IQR 2.9-6.8). A CRI cutoff of 0.4 provided the best combination of sensitivity and specificity for predicting recurrent shock (0.66 [95% CI 0.47-0.85] and 0.86 [95% CI 0.80-0.92] respectively). CONCLUSION: CRI is a useful non-invasive method for monitoring intravascular volume status in patients with severe dengue.
Asunto(s)
Dengue Grave , Choque , Presión Sanguínea/fisiología , Niño , Frecuencia Cardíaca/fisiología , Humanos , Estudios Prospectivos , Dengue Grave/diagnóstico , Choque/diagnósticoRESUMEN
Investigating the origin of parthenogenesis through interspecific hybridization can provide insight into how meiosis may be altered by genetic incompatibilities, which is fundamental for our understanding of the formation of reproductive barriers. Yet the genetic mechanisms giving rise to obligate parthenogenesis in eukaryotes remain understudied. In the microcrustacean Daphnia pulex species complex, obligately parthenogenetic (OP) isolates emerged as backcrosses of two cyclically parthenogenetic (CP) parental species, D. pulex and D. pulicaria, two closely related but ecologically distinct species. We examine the genome-wide expression in OP females at the early resting egg production stage, a life-history stage distinguishing OP and CP reproductive strategies, in comparison to CP females of the same stage from the two parental species. Our analyses of the expression data reveal that underdominant and overdominant genes are abundant in OP isolates, suggesting widespread regulatory incompatibilities between the parental species. More importantly, underdominant genes (i.e., genes with expression lower than both parentals) in the OP isolates are enriched in meiosis and cell-cycle pathways, indicating an important role of underdominance in the origin of obligate parthenogenesis. Furthermore, metabolic and biosynthesis pathways enriched with overdominant genes (i.e., expression higher than both parentals) are another genomic signature of OP isolates.
Asunto(s)
Partenogénesis , Transcriptoma , Animales , Daphnia/genética , Femenino , Hibridación Genética , Meiosis/genética , Partenogénesis/genéticaRESUMEN
BACKGROUND: Dengue is a neglected tropical disease, for which no therapeutic agents have shown clinical efficacy to date. Clinical trials have used strikingly variable clinical endpoints, which hampers reproducibility and comparability of findings. We investigated a delta modified Sequential Organ Failure Assessment (delta mSOFA) score as a uniform composite clinical endpoint for use in clinical trials investigating therapeutics for moderate and severe dengue. METHODS: We developed a modified SOFA score for dengue, measured and evaluated its performance at baseline and 48 h after enrolment in a prospective observational cohort of 124 adults admitted to a tertiary referral hospital in Vietnam with dengue shock. The modified SOFA score included pulse pressure in the cardiovascular component. Binary logistic regression, cox proportional hazard and linear regression models were used to estimate association between mSOFA, delta mSOFA and clinical outcomes. RESULTS: The analysis included 124 adults with dengue shock. 29 (23.4%) patients required ICU admission for organ support or due to persistent haemodynamic instability: 9/124 (7.3%) required mechanical ventilation, 8/124 (6.5%) required vasopressors, 6/124 (4.8%) required haemofiltration and 5/124 (4.0%) patients died. In univariate analyses, higher baseline and delta (48 h) mSOFA score for dengue were associated with admission to ICU, requirement for organ support and mortality, duration of ICU and hospital admission and IV fluid use. CONCLUSIONS: The baseline and delta mSOFA scores for dengue performed well to discriminate patients with dengue shock by clinical outcomes, including duration of ICU and hospital admission, requirement for organ support and death. We plan to use delta mSOFA as the primary endpoint in an upcoming host-directed therapeutic trial and investigate the performance of this score in other phenotypes of severe dengue in adults and children.
Asunto(s)
Puntuaciones en la Disfunción de Órganos , Dengue Grave , Humanos , Unidades de Cuidados Intensivos , Insuficiencia Multiorgánica , Pronóstico , Reproducibilidad de los Resultados , Estudios Retrospectivos , Centros de Atención TerciariaRESUMEN
Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are recognized as emerging environmental pollutants because of their high persistence in various environmental matrices and toxic effects on humans and animals. In Vietnam, PFOA and PFOS have been detected in surface water and sediment in recent studies. The objectives of this study were to evaluate the spatial and vertical distribution, determine the factors affecting the sorption onto sediment, and assess the environmental risk of PFOS and PFOA in the sediment of the Cau River. The average concentrations of PFOS and PFOA in the surface sediment were 2.66 ng/g and 0.84 ng/g, respectively. The highest concentrations were recorded in the areas receiving wastewater from domestic and industrial activities. According to the depth, the contents of target chemicals in the surface sediments (0-5 cm) were lower than those in the second layer (5-10 cm). The remaining layers have decreasing concentration as the depth of the sediment increases. The water-sediment distribution coefficient was relatively different for PFOS and PFOA with log Kd values ranging from 1.31 to 1.86 and from 0.08 to 1.31, respectively. This study also demonstrated that the level of PFOS and PFOA in sediment is significantly correlated with total organic carbon content of sediment. No apparent relation was found between PFOS, PFOA concentration in sediment, and particle size distribution. Risk quotients of the two compounds were below 0.01, indicating that the environmental risk in the sediment is negligible at present. The results of this study provide an overview of PFOS and PFOA contamination in sediment in the Cau River, Vietnam.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Animales , Caprilatos , Monitoreo del Ambiente/métodos , Fluorocarburos/análisis , Sedimentos Geológicos/química , Ríos/química , Vietnam , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
Forward genetic screening using the alkylating mutagen ethyl methanesulfonate (EMS) is an effective method for identifying phenotypic mutants of interest, which can be further genetically dissected to pinpoint the causal genetic mutations. An accurate estimate of the rate of EMS-induced heritable mutations is fundamental for determining the mutant sample size of a screening experiment that aims to saturate all the genes in a genome with mutations. This study examines the genome-wide EMS-induced heritable base-substitutions in three species of the freshwater microcrustacean Daphnia to help guide screening experiments. Our results show that the 10 mM EMS treatment induces base substitutions at an average rate of 1.17 × 10-6/site/generation across the three species, whereas a significantly higher average mutation rate of 1.75 × 10-6 occurs at 25 mM. The mutation spectrum of EMS-induced base substitutions at both concentration is dominated by G:C to A:T transitions. Furthermore, we find that female Daphnia exposed to EMS (F0 individuals) can asexually produce unique mutant offspring (F1) for at least 3 consecutive broods, suggestive of multiple broods as F1 mutants. Lastly, we estimate that about 750 F1s are needed for all genes in the Daphnia genome to be mutated at least once with a 95% probability. We also recommend 4-5 F2s should be collected from each F1 mutant through sibling crossing so that all induced mutations could appear in the homozygous state in the F2 population at 70-80% probability.
Asunto(s)
Daphnia , Mutágenos , Animales , Daphnia/genética , Metanosulfonato de Etilo/toxicidad , Femenino , Homocigoto , Humanos , Mutágenos/toxicidad , MutaciónRESUMEN
BACKGROUND: Heterogeneous respiratory system static compliance (CRS) values and levels of hypoxemia in patients with novel coronavirus disease (COVID-19) requiring mechanical ventilation have been reported in previous small-case series or studies conducted at a national level. METHODS: We designed a retrospective observational cohort study with rapid data gathering from the international COVID-19 Critical Care Consortium study to comprehensively describe CRS-calculated as: tidal volume/[airway plateau pressure-positive end-expiratory pressure (PEEP)]-and its association with ventilatory management and outcomes of COVID-19 patients on mechanical ventilation (MV), admitted to intensive care units (ICU) worldwide. RESULTS: We studied 745 patients from 22 countries, who required admission to the ICU and MV from January 14 to December 31, 2020, and presented at least one value of CRS within the first seven days of MV. Median (IQR) age was 62 (52-71), patients were predominantly males (68%) and from Europe/North and South America (88%). CRS, within 48 h from endotracheal intubation, was available in 649 patients and was neither associated with the duration from onset of symptoms to commencement of MV (p = 0.417) nor with PaO2/FiO2 (p = 0.100). Females presented lower CRS than males (95% CI of CRS difference between females-males: - 11.8 to - 7.4 mL/cmH2O p < 0.001), and although females presented higher body mass index (BMI), association of BMI with CRS was marginal (p = 0.139). Ventilatory management varied across CRS range, resulting in a significant association between CRS and driving pressure (estimated decrease - 0.31 cmH2O/L per mL/cmH20 of CRS, 95% CI - 0.48 to - 0.14, p < 0.001). Overall, 28-day ICU mortality, accounting for the competing risk of being discharged within the period, was 35.6% (SE 1.7). Cox proportional hazard analysis demonstrated that CRS (+ 10 mL/cm H2O) was only associated with being discharge from the ICU within 28 days (HR 1.14, 95% CI 1.02-1.28, p = 0.018). CONCLUSIONS: This multicentre report provides a comprehensive account of CRS in COVID-19 patients on MV. CRS measured within 48 h from commencement of MV has marginal predictive value for 28-day mortality, but was associated with being discharged from ICU within the same period. Trial documentation: Available at https://www.covid-critical.com/study . TRIAL REGISTRATION: ACTRN12620000421932.
Asunto(s)
COVID-19/complicaciones , COVID-19/terapia , Rendimiento Pulmonar/fisiología , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , Adulto , Estudios de Cohortes , Cuidados Críticos/métodos , Europa (Continente) , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la EnfermedadRESUMEN
Pharmaceutical and personal care products (PPCPs) recently defined as emerging pollutants that widespread in surface water all around the world. This study investigated the distribution, and ecological risk of PPCPs in urban rivers of Hanoi, Vietnam, and Metro Manila, the Philippines. Of the 56 investigated PPCPs, 48 and 33 compounds were detected in the river water in Hanoi and in Metro Manila, respectively. The individual PPCP concentrations ranged from a few ng L-1 to thousands of ng L-1. The total concentration of PPCPs detected in water samples ranged from 7.5 to 20,789 ng L-1 in Hanoi and 118 to 3,394 ng L-1 in Manila. The predominant antibiotics was sulfamethoxazole detected in 27/28 samples with a maximum concentration up to 2,778 ng L-1 in Hanoi and presented in all samples with a maximum concentration up to 261 ng L-1 in Metro Manila. In Hanoi, the level of PPCPs in urban canals of Kim Nguu and To Lich Rivers was as high as that detected in domestic wastewater. The PPCP concentrations in tributaries and mainstream were lower than those found in urban canals. In rivers of both sites, PPCPs tended to increase along the stream. The concentration ratio of the labile marker caffeine to recalcitrant marker carbamazepine indicated that untreated domestic wastewater is the significant source of PPCPs in river water in Hanoi and Metro Manila. The ecological risk estimated by the risk quotient of the obtained maximum residue of PPCPs in investigated river water predicted a high risk of PPCPs to the aquatic organism in both Hanoi and Manila.
Asunto(s)
Cosméticos , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , China , Cosméticos/análisis , Monitoreo del Ambiente , Filipinas , Ríos , Contaminantes Químicos del Agua/análisisRESUMEN
Mutation rate in the nuclear genome differs between sexes, with males contributing more mutations than females to their offspring. The male-biased mutation rates in the nuclear genome is most likely to be driven by a higher number of cell divisions in spermatogenesis than in oogenesis, generating more opportunities for DNA replication errors. However, it remains unknown whether male-biased mutation rates are present in mitochondrial DNA (mtDNA). Although mtDNA is maternally inherited and male mtDNA mutation typically does not contribute to genetic variation in offspring, male mtDNA mutations are critical for male reproductive health. In this study, we measured male mtDNA mutation rate using publicly available whole-genome sequences of single sperm of the freshwater microcrustacean Daphnia pulex Using a stringent mutation detection pipeline, we found that the male mtDNA mutation rate is 3.32 × 10-6 per site per generation. All the detected mutations are heteroplasmic base substitutions, with 57% of mutations converting G/C to A/T nucleotides. Consistent with the male-biased mutation in the nuclear genome, the male mtDNA mutation rate in D. pulex is approximately 20 times higher than the female rate per generation. We propose that the elevated mutation rate per generation in male mtDNA is consistent with an increased number of cell divisions during male gametogenesis.
Asunto(s)
ADN Mitocondrial/genética , Daphnia/genética , Tasa de Mutación , Espermatozoides , Animales , Femenino , MasculinoRESUMEN
BACKGROUND: Whether the benefits of phosphorus binders extend to those without end stage renal disease is uncertain. Among a large diverse non-dialysis chronic kidney disease (CKD) population with hyperphosphatemia, we sought to evaluate phosphorus binder use and compare mortality risk between patients prescribed and not prescribed binders. METHODS: A retrospective cohort study within an integrated health system (January 1, 1998 - December 31, 2012) among CKD patients (age ≥18) was performed. Non-dialysis CKD patients with 2 separate estimated glomerular filtrate rate (eGFR) <30 mL/min/1.73 m2 and serum phosphorus ≥5.0 mg/dL within 180 days of eGFR were included. Multivariable cox proportional hazards and inverse probability of treatment-weighted models were used to estimate mortality hazard ratios (HRs) for patients who received phosphorus binders compared to no binders. RESULTS: Among 10,165 study patients, 2,733 subjects (27%) received phosphorus binders. Compared to the no-phosphorus-binder group, the binder group had mortality HRs (95% CI) of 0.86 (0.79-0.94) and 0.86 (0.80-0.93) using traditional multivariable and inverse probability of treatment-weighted models respectively. Sensitivity analyses removing patients who were prescribed binders >180 days after index date revealed no difference in mortality between those with binders and with no binders. CONCLUSION: Our findings from a real-world clinical environment revealed that 27% of hyperphosphatemic non-dialysis CKD patients were prescribed binders. They also had lower risk of mortality compared to those not prescribed phosphorus binders. However, the lower mortality risk was not observed when we accounted for immortal time bias. Whether phosphorus binder use in CKD improves survival remains to be determined.
Asunto(s)
Quelantes/uso terapéutico , Hiperfosfatemia/tratamiento farmacológico , Fosfatos/sangre , Insuficiencia Renal Crónica/tratamiento farmacológico , Anciano , Femenino , Tasa de Filtración Glomerular , Humanos , Hiperfosfatemia/sangre , Hiperfosfatemia/etiología , Hiperfosfatemia/mortalidad , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/mortalidad , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
UNLABELLED: The vaccinia virus (VACV) E3 protein has been shown to be important for blocking activation of the cellular innate immune system and allowing viral replication to occur unhindered. Mutation or deletion of E3L severely affects viral host range and pathogenesis. While the monkeypox virus (MPXV) genome encodes a homologue of the VACV E3 protein, encoded by the F3L gene, the MPXV gene is predicted to encode a protein with a truncation of 37 N-terminal amino acids. VACV with a genome encoding a similarly truncated E3L protein (VACV-E3LΔ37N) has been shown to be attenuated in mouse models, and infection with VACV-E3LΔ37N has been shown to lead to activation of the host antiviral protein kinase R pathway. In this report, we present data demonstrating that, despite containing a truncated E3 homologue, MPXV phenotypically resembles a wild-type (wt) VACV rather than VACV-E3LΔ37N. Thus, MPXV appears to contain a gene or genes that can suppress the phenotypes associated with an N-terminal truncation in E3. The suppression maps to sequences outside F3L, suggesting that the suppression is extragenic in nature. Thus, MPXV appears to have evolved mechanisms to minimize the effects of partial inactivation of its E3 homologue. IMPORTANCE: Poxviruses have evolved to have many mechanisms to evade host antiviral innate immunity; these mechanisms may allow these viruses to cause disease. Within the family of poxviruses, variola virus (which causes smallpox) is the most pathogenic, while monkeypox virus is intermediate in pathogenicity between vaccinia virus and variola virus. Understanding the mechanisms of monkeypox virus innate immune evasion will help us to understand the evolution of poxvirus innate immune evasion capabilities, providing a better understanding of how poxviruses cause disease.
Asunto(s)
Evasión Inmune , Inmunidad Innata , Interferón Tipo I/inmunología , Monkeypox virus/genética , Proteínas de Unión al ARN/genética , Virus Vaccinia/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Evolución Biológica , Línea Celular , Chlorocebus aethiops , Cricetulus , Células Epiteliales/inmunología , Células Epiteliales/virología , Expresión Génica , Células HeLa , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Interferón Tipo I/genética , Datos de Secuencia Molecular , Monkeypox virus/inmunología , Monkeypox virus/patogenicidad , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/inmunología , Conejos , Alineación de Secuencia , Transducción de Señal , Virus Vaccinia/inmunología , Virus Vaccinia/patogenicidad , Células Vero , Proteínas Virales/química , Proteínas Virales/inmunología , Replicación ViralRESUMEN
Waste electrical and electronic equipment (WEEE) constitutes one of the most problematic waste streams worldwide, and accurately estimating the scale of WEEE can assist in tackling its associated issues. However, obtaining an accurate estimation of WEEE remains a challenge because a share of the waste is difficult to calculate. This share stems from the administratively unregistered (so-called "invisible") inflow of electrical and electronic equipment (EEE) into the domestic market. As a first attempt to qualitatively and quantitatively investigate this invisible inflow, this study discusses the nature of this flow in detail and proposes a calculation pathway for quantifying its magnitude. The size of the invisible inflow to a domestic market (assumed equal to invisible sales) is calculated by subtracting the registered, also called "visible", sales from the total sales. The total sales are modeled, whereas the visible sales are derived from statistical data. The method is illustrated by a case study on televisions (TVs) in Vietnam. The results show that from 2002 to 2013, the invisible TV inflow contributed, on average, 15% to the total TV sales (coefficient of variation: 0.21). This average share would increase by approximately 1.0% when the maximum number of TVs used per household increased by 1.0%. However, it would decrease by 1.7% when the visible sales increased by 1.0%. Additionally, the average share of the invisible TV inflow would change from 15% to 27% when an unadjusted constant instead of an adjusted time-varying lifespan is employed. This first estimation of the invisible EEE inflow to the domestic market can be improved with additional knowledge and data in the future.
Asunto(s)
Residuos Electrónicos/análisis , Electrónica , Televisión , Modelos Teóricos , Incertidumbre , VietnamRESUMEN
During embryonic development oligodendrocyte precursor cells (OPCs) are generated first in the ventral forebrain and migrate dorsally to occupy the cortex. The molecular cues that guide this migratory route are currently completely unknown. Here, we show that bone morphogenetic protein-4 (Bmp4), Bmp7, and Tgfß1 produced by the meninges and pericytes repelled ventral OPCs into the cortex at mouse embryonic stages. Ectopic activation of Bmp or Tgfß1 signaling before the entrance of OPCs into the cortex hindered OPC migration into the cortical areas. OPCs without Smad4 signaling molecules also failed to migrate into the cortex efficiently and formed heterotopia in ventral areas. OPC migration into the cortex was also dramatically reduced by conditional inhibition of Tgfß1 or Bmp expression from mesenchymal cells. The data suggest that mesenchymal Tgfß family proteins promote migration of ventral OPCs into the cortex during corticogenesis.
Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Movimiento Celular , Corteza Cerebral/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Oligodendroglía/metabolismo , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 7/genética , Corteza Cerebral/embriología , Meninges/embriología , Meninges/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Pericitos/metabolismo , Transducción de Señal , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Despite the revolutionary impacts of CRISPR-Cas gene editing systems, the effective and widespread use of CRISPR technologies in emerging model organisms still faces significant challenges. These include the inefficiency in generating heritable mutations at the organismal level, limited knowledge about the genomic consequences of gene editing, and an inadequate understanding of the inheritance patterns of CRISPR-Cas-induced mutations. This study addresses these issues by 1) developing an efficient microinjection delivery method for CRISPR editing in the microcrustacean Daphnia pulex; 2) assessing the editing efficiency of Cas9 and Cas12a nucleases, examining mutation inheritance patterns, and analyzing the local and global mutation spectrum in the scarlet mutants; and 3) investigating the transcriptomes of scarlet mutants to understand the pleiotropic effects of scarlet underlying their swimming behavior changes. Our reengineered CRISPR microinjection method results in efficient biallelic editing with both nucleases. While indels are dominant in Cas-induced mutations, a few on-site large deletions (>1kb) are observed, most likely caused by microhomology-mediated end joining repair. Knock-in of a stop codon cassette to the scarlet locus was successful, despite complex induced mutations surrounding the target site. Moreover, extensive germline mosaicism exists in some mutants, which unexpectedly produce different phenotypes/genotypes in their asexual progenies. Lastly, our transcriptomic analyses unveil significant gene expression changes associated with scarlet knock-out and altered swimming behavior in mutants, including several genes (e.g., NMDA1, ABAT, CNTNAP2) involved in human neurodegenerative diseases. This study expands our understanding of the dynamics of gene editing in the tractable model organism Daphnia and highlights its promising potential as a neurological disease model.
RESUMEN
3-Nitro-l-tyrosine (3NT) is an oxidative stress metabolite associated with neurodegenerative diseases such as Parkinson's disease and rheumatoid arthritis. In this study, the N, S-co-doped graphene quantum dots (NSGQDs) derived from nitrogen-doped Ti3C2Tx MXene nanosheet via the hydrothermal method in the presence of mercaptosuccinic acid was synthesized as an optical sensing probe to detect 3NT in human serum. Tetramethyl ammonium hydroxide, the nitrogen source and delamination agent, was used to prepare nitrogen-doped MXene nanosheets via one step at room temperature. The as-prepared NSGQDs are uniform with an average size of 1.2 ± 0.6 nm, and can be stable in aqueous solution for at least 90 d to serve as the fluorescence probe. The N atoms in N-MXene reduce the restacking and aggregation of MXene nanosheets, while the sulfur dopant in NSGQDs increases the quantum yield from 6.2 to 12.1 % as well as enhances the selectivity of 3NT over the other 12 interferences via coordination interaction with nitro group in 3NT. A linear range of 0.02-150 µM in PBS and 0.05-200 µM in human serum with a recovery of 97-108 % for 3NT detection is observed. Moreover, the limit of detection can be lowered to 4.2 and 7 nM in PBS and 1 × diluted human serum, respectively. Results obtained clearly indicate the potential application of the N-Ti3C2Tx derived NSGQD for effective detection of 3NT, which can open a window for the synthesis of doped GQDs via 2D MXene materials for ultrasensitive and selective detection of other biometabolites and biomarkers of neurodegenerative diseases in biological fluids.
Asunto(s)
Grafito , Enfermedades Neurodegenerativas , Nitritos , Puntos Cuánticos , Elementos de Transición , Tirosina/análogos & derivados , Humanos , NitrógenoRESUMEN
We developed an efficient CRISPR prime editing protocol and generated isogenic-induced pluripotent stem cell (iPSC) lines carrying heterozygous or homozygous alleles for putatively causal single nucleotide variants at six type 2 diabetes loci (ABCC8, MTNR1B, TCF7L2, HNF4A, CAMK1D, and GCK). Our two-step sequence-based approach to first identify transfected cell pools with the highest fraction of edited cells significantly reduced the downstream efforts to isolate single clones of edited cells. We found that prime editing can make targeted genetic changes in iPSC and optimization of system components and guide RNA designs that were critical to achieve acceptable efficiency. Systems utilizing PEmax, epegRNA modifications, and MLH1dn provided significant benefit, producing editing efficiencies of 36-73%. Editing success and pegRNA design optimization required for each variant differed depending on the sequence at the target site. With attention to design, prime editing is a promising approach to generate isogenic iPSC lines, enabling the study of specific genetic changes in a common genetic background.
Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , Edición Génica , ARN Guía de Sistemas CRISPR-CasRESUMEN
Glycocalyx disruption and hyperinflammatory responses are implicated in the pathogenesis of dengue-associated vascular leak, however little is known about their association with clinical outcomes of patients with dengue shock syndrome (DSS). We investigated the association of vascular and inflammatory biomarkers with clinical outcomes and their correlations with clinical markers of vascular leakage. We performed a prospective cohort study in Viet Nam. Children ≥5 years of age with a clinical diagnosis of DSS were enrolled into this study. Blood samples were taken daily during ICU stay and 7-10 days after hospital discharge for measurements of plasma levels of Syndecan-1, Hyaluronan, Suppression of tumourigenicity 2 (ST-2), Ferritin, N-terminal pro Brain Natriuretic Peptide (NT-proBNP), and Atrial Natriuretic Peptide (ANP). The primary outcome was recurrent shock. Ninety DSS patients were enrolled. Recurrent shock occurred in 16 patients. All biomarkers, except NT-proBNP, were elevated at presentation with shock. There were no differences between compensated and decompensated DSS patients. Glycocalyx markers were positively correlated with inflammatory biomarkers, haematocrit, percentage haemoconcentration, and negatively correlated with stroke volume index. While Syndecan-1, Hyaluronan, Ferritin, and ST-2 improved with time, ANP continued to be raised at follow-up. Enrolment Syndecan-1 levels were observed to be associated with developing recurrent shock although the association did not reach the statistical significance at the P < 0.01 (OR = 1.82, 95% CI 1.07-3.35, P = 0.038). Cardiovascular and inflammatory biomarkers are elevated in DSS, correlate with clinical vascular leakage parameters and follow different kinetics over time. Syndecan-1 may have potential utility in risk stratifying DSS patients in ICU.
RESUMEN
BACKGROUND: Dengue epidemics impose considerable strain on healthcare resources. Real-time continuous and non-invasive monitoring of patients admitted to the hospital could lead to improved care and outcomes. We evaluated the performance of a commercially available wearable (SmartCare) utilising photoplethysmography (PPG) to stratify clinical risk for a cohort of hospitalised patients with dengue in Vietnam. METHODS: We performed a prospective observational study for adult and paediatric patients with a clinical diagnosis of dengue at the Hospital for Tropical Disease, Ho Chi Minh City, Vietnam. Patients underwent PPG monitoring early during admission alongside standard clinical care. PPG waveforms were analysed using machine learning models. Adult patients were classified between 3 severity classes: i) uncomplicated (ward-based), ii) moderate-severe (emergency department-based), and iii) severe (ICU-based). Data from paediatric patients were split into 2 classes: i) severe (during ICU stay) and ii) follow-up (14-21 days after the illness onset). Model performances were evaluated using standard classification metrics and 5-fold stratified cross-validation. FINDINGS: We included PPG and clinical data from 132 adults and 15 paediatric patients with a median age of 28 (IQR, 21-35) and 12 (IQR, 9-13) years respectively. 1781 h of PPG data were available for analysis. The best performing convolutional neural network models (CNN) achieved a precision of 0.785 and recall of 0.771 in classifying adult patients according to severity class and a precision of 0.891 and recall of 0.891 in classifying between disease and post-disease state in paediatric patients. INTERPRETATION: We demonstrate that the use of a low-cost wearable provided clinically actionable data to differentiate between patients with dengue of varying severity. Continuous monitoring and connectivity to early warning systems could significantly benefit clinical care in dengue, particularly within an endemic setting. Work is currently underway to implement these models for dynamic risk predictions and assist in individualised patient care. FUNDING: EPSRC Centre for Doctoral Training in High-Performance Embedded and Distributed Systems (HiPEDS) (Grant: EP/L016796/1) and the Wellcome Trust (Grants: 215010/Z/18/Z and 215688/Z/19/Z).
Asunto(s)
Dengue , Aprendizaje Automático , Fotopletismografía , Índice de Severidad de la Enfermedad , Dispositivos Electrónicos Vestibles , Humanos , Femenino , Masculino , Estudios Prospectivos , Adulto , Fotopletismografía/métodos , Fotopletismografía/instrumentación , Niño , Adolescente , Dengue/diagnóstico , Adulto Joven , VietnamRESUMEN
Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.