RESUMEN
BACKGROUND: Euphorbia supina (ES) has been widely used in folk medicine owing to its antibacterial, hemostatic, and anti-inflammatory properties. The aim of this study was to evaluate the antioxidant and skin-whitening effects of a 70% ethanol extract of ES. METHODS: The aerial parts of ES plant were extracted with 70% ethanol. The viability of B16F10 cells was evaluated by MTT assay to determine the non-toxic doses for further experiments. The tyrosinase and cellular tyrosinase activities were then measured using an enzyme-substrate assay. In addition, the expression of whitening-related proteins was measured using western blot. RESULTS: The antioxidant activity of the ES samples increased in a dose-dependent manner, as confirmed by their radical scavenging activities in the 2,2-diphenyl-1-1-picrylhydrazyl and 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) assays. The ES extract significantly reduced tyrosinase activity and melanin content in a dose-dependent manner. Furthermore, it decreased α-melanocyte stimulating hormone (MSH)-induced protein expression of tyrosinase and microphthalmia-associated transcription factor (MITF). CONCLUSIONS: Our results indicate that the ES extract attenuated α-MSH-stimulated melanin synthesis by modulating tyrosinase and MITF expression. Therefore, the ES extract could be a promising therapeutic agent to treat hyperpigmentation and as an ingredient for skin-whitening cosmetics.
Asunto(s)
Antioxidantes/farmacología , Euphorbia/química , Componentes Aéreos de las Plantas/química , Extractos Vegetales/farmacología , Preparaciones para Aclaramiento de la Piel/farmacología , Animales , Antioxidantes/química , Línea Celular Tumoral , Melaninas/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/química , Biosíntesis de Proteínas/efectos de los fármacos , Preparaciones para Aclaramiento de la Piel/química , alfa-MSH/metabolismoRESUMEN
BACKGROUND: Euphorbia supina (ES) plant has been used as treatment for inflammatory conditions. The antibacterial effect and the anti-inflammatory mechanism of ES for Propionibacterium (P.) acnes-induced inflammation in THP-1 cells and acne animal model remain unclear. Therefore, the objective of the present study was to determine the antibacterial and anti-inflammatory activities of ES against P. acnes, the etiologic agent of skin inflammation. METHOD: The antibacterial activities of ES were tested with disc diffusion and broth dilution methods. Cytotoxicity of ES at different doses was evaluated by the MTT assay. THP-1 cells were stimulated by heat-killed P. acnes in the presence of ES. The pro-inflammatory cytokines and mRNA levels were measured by ELISA and real-time-PCR. MAPK expression was analyzed by Western blot. The living P. acnes was intradermally injected into the ear of BLBC/c mice. Subsequently, chemical composition of ES was analyzed by liquids chromatography-mass spectrometry (LC-MS). RESULT: ES had stronger antibacterial activity against P. acnes and inhibitory activity on lipase. ES had no significant cytotoxicity on THP-1 cells. ES suppressed the mRNA levels and production of IL-8, TNF-a, IL-1ß in vitro. ES inhibited the expression levels of pro-inflammatory cytokines and the MAPK signaling pathway. Ear thickness and inflammatory cells were markedly reduced by ES treatment. Protocatechuic acid, gallic acid, quercetin, and kaempferol were detected by LC-MS analysis in ES. CONCLUSIONS: Our results demonstrate antibacterial and anti-inflammatory activities of ES extract against P. acnes. It is suggested that ES extract might be used to treatment anti-inflammatory skin disease.
Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Euphorbia/química , Inflamación/microbiología , Extractos Vegetales/farmacología , Propionibacterium acnes/efectos de los fármacos , Animales , Antibacterianos/toxicidad , Antiinflamatorios/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Inflamación/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Extractos Vegetales/toxicidad , Piel/efectos de los fármacos , Piel/patologíaRESUMEN
Before an infection can be completely established, the host immediately turns on the innate immune system through activating the interferon (IFN)-mediated antiviral pathway. Kaposi's sarcoma-associated herpesvirus (KSHV) utilizes a unique antagonistic mechanism of type I IFN-mediated host antiviral immunity by incorporating four viral interferon regulatory factors (vIRF1-4). Herein, we characterized novel immune evasion strategies of vIRF4 to inhibit the IRF7-mediated IFN-α production. KSHV vIRF4 specifically interacts with IRF7, resulting in inhibition of IRF7 dimerization and ultimately suppresses IRF7-mediated activation of type I IFN. These results suggest that each of the KSHV vIRFs, including vIRF4, subvert IFN-mediated anti-viral response via different mechanisms. Therefore, it is indicated that KSHV vIRFs are indeed a crucial immunomodulatory component of their life cycles.
Asunto(s)
Herpesvirus Humano 8/inmunología , Evasión Inmune , Factor 7 Regulador del Interferón/inmunología , Factores Reguladores del Interferón/inmunología , Interferón-alfa/inmunología , Proteínas Virales/inmunología , Regulación de la Expresión Génica , Genes Reporteros , Células HEK293 , Herpesvirus Humano 8/química , Humanos , Inmunidad Innata , Factor 7 Regulador del Interferón/genética , Factores Reguladores del Interferón/genética , Interferón-alfa/antagonistas & inhibidores , Interferón-alfa/genética , Luciferasas/genética , Luciferasas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Virus Sendai/genética , Virus Sendai/inmunología , Transducción de Señal , Transfección , Proteínas Virales/genéticaRESUMEN
The aim of this study is to examine the anti-inflammatory effect of Euphorbia supina (ES) ethanol extract in dextran sulfate sodium (DSS)-induced experimental colitis model. ES was per orally administered at different doses of 4 or 20 mg/kg body weight with 5% DSS in drinking water for 7 days. Twenty mg/kg of ES administration regulated body weight decrease, recovered colon length shortening, and increased disease activity index score and myeloperoxidase level in DSS-induced colitis. Histological features showed that 20 mg/kg of ES administration suppressed edema, mucosal damage, and the loss of crypts induced by DSS. Furthermore, ES suppressed the expressions of COX-2, iNOS, NF-kB, IkBα, pIkBα in colon tissue. These findings demonstrated a possible effect of amelioration of ulcerative colitis and could be clinically applied.
Asunto(s)
Antiinflamatorios/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Sulfato de Dextran/efectos adversos , Euphorbia/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/uso terapéutico , Peso Corporal/efectos de los fármacos , Colitis/metabolismo , Colitis/patología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Ciclooxigenasa 2/metabolismo , Etanol/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peroxidasa/metabolismo , Extractos Vegetales/uso terapéutico , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Nanophotonics capable of directing radiation or enhancing quantum-emitter transition rates rely on plasmonic nanoantennas. We present here a novel Babinet-inverted magnetic-dipole-fed multislot optical Yagi-Uda antenna that exhibits highly unidirectional radiation to free space, achieved by engineering the relative phase of the interacting surface plasmon polaritons between the slot elements. The unique features of this nanoantenna can be harnessed for realizing energy transfer from one waveguide to another by working as a future "optical via".
RESUMEN
Herein, we will propose a new application possibility of epsilon-near-zero (ENZ) materials: high resolution wide-field imaging. We show that the resolution can be dramatically enhanced by simply inserting a thin epsilon-near-zero (ENZ) material between the sample and substrate. By performing metal half-plane imaging, we experimentally demonstrate that the resolution could be enhanced by about 47% with a 300-nm-thick SiO2 interlayer, an ENZ material at 8-µm-wavelength (1250 cm-1). The physical origin of the resolution enhancement is the strong conversion of diffracted near fields to quasi-zeroth order far fields enabled by the directive emission of ENZ materials.
Asunto(s)
Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Interpretación de Imagen Asistida por Computador/métodos , Lentes , Microscopía/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
In order to realize deoxyribonucleic acid (DNA)-based molecular electronics, chemical modifications of DNA are needed to improve electrical conductivity. We developed a novel method utilizing the incorporation of Au(III) ions into DNA bases to alter their electronic properties. When Au(III) ions were incorporated proportionally into DNA bases, conductance increased up to an Au(III) content of 0.42 Au(III) ion/nucleotide. Surprisingly, electron paramagnetic resonance signals of Au(II) ions were detected at g â¼1.98, and the calculated spin number of Au(II) ions ranged from â¼10(13) to â¼10(15). The structural deformation of the DNA helix occurred when complexed with Au(III); simultaneously, the conductance of DNA-Au(III) complexes decreased when the content of Au(III) was higher than 0.42 atom/nucleotide. This observation implies that the maintenance of helical structure in the Au(III) doped state of DNA molecules is very important to the enhancement of the carrier mobility of DNA.
Asunto(s)
ADN/química , Conductividad Eléctrica , Oro/química , Nanofibras/química , Espectroscopía de Resonancia por Spin del Electrón , Iones , Conformación de Ácido NucleicoRESUMEN
The rectifying Schottky characteristics of the metal-semiconductor junction with high contact resistance have been a serious issue in modern electronic devices. Herein, we demonstrated the conversion of the Schottky nature of the Ni-Si junction, one of the most commonly used metal-semiconductor junctions, into an Ohmic contact with low contact resistance by inserting a single layer of graphene. The contact resistance achieved from the junction incorporating graphene was about 10(-8) ~ 10(-9) Ω cm(2) at a Si doping concentration of 10(17) cm(-3).
RESUMEN
A large-scale nanoporous graphene (NPG) fabrication method via a thin anodic aluminum oxide (AAO) etching mask is presented in this paper. A thin AAO film is successfully transferred onto a hydrophobic graphene surface under no external force. The AAO film is completely stacked on the graphene due to the van der Waals force. The neck width of the NPG can be controlled ranging from 10 nm to 30 nm with different AAO pore widening times. Extension of the NPG structure is demonstrated on a centimeter scale up to 2 cm2. AAO and NPG structures are characterized using optical microscopy (OM), Raman spectroscopy and field-emission scanning electron microscopy (FE-SEM). A field effect transistor (FET) is realized by using NPG. Its electrical characteristics turn out to be different from that of pristine graphene, which is due to the periodic nanostructures. The proposed fabrication method could be adapted to a future graphene-based nano device.
Asunto(s)
Óxido de Aluminio/química , Electrodos , Galvanoplastia/instrumentación , Galvanoplastia/métodos , Grafito/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Cristalización/métodos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Porosidad , Propiedades de SuperficieRESUMEN
We fabricated a nickel silicide nanowire (NiSi NW) device with a low thermal budget and characterized it by measuring the S-parameters in the radio-frequency (RF) regime. A single silicon nanowire (Si NW) was assembled on a substrate with a two-port coplanar waveguide structure using the dielectrophoresis method. Then, the Si NW on the device was perfectly transformed into a NiSi NW. The NiSi NW device was characterized by performing measurements in the DC and RF regimes. The transformation into the NiSi NW resulted in reducing about three-order more the resistance than before the transformation. Hence, the transmission of the NiSi NW device was 25 dB higher than that of the Si NW device up to gigahertz. We also discussed extracting the intrinsic properties of the NiSi NW by using de-embedding, circuit modeling, and simulation.
RESUMEN
Real-time pulse measurements of nano-scale field effect transistors (FETs) are reported. We demonstrate the direct monitoring of the real-time current of bottom-up assembled silicon nanowire FET and top-down fabricated gate-all-around silicon nanowire FET, both with the diameter of approximately 50 nm. We demonstrate that the displacement current can be cancelled out from the measured pulse responses. On the other hand, the displacement current also can be utilized to obtain the coupling capacitance between the gate and source of the FETs.
RESUMEN
We report on the catalytic growth of thin carbon sheathed single crystal germanium nanowires (GeNWs), which can solve the obstacles that have disturbed a wide range of applications of GeNWs. Single crystal Ge NW core and amorphous carbon sheath are simultaneously grown via vapor-liquid-solid (VLS) process. The carbon sheath completely blocks unintentional vapor deposition on NW surface, thus ensuring highly uniform diameter, dopant distribution, and electrical conductivity along the entire NW length. Furthermore, the sheath not only inhibits metal diffusion but also improves the chemical stability of GeNWs at even high temperatures.
RESUMEN
The crystalline germanium nanowires (GeNWs) with a uniform graphitic carbon shell were prepared via a conventional low-pressure chemical vapor deposition method without any external catalyst. The GeNWs grown at low temperature (Tg < 500 degrees C) have a uniform diameter with a large expect ratio of more than 10(3). With increasing the growth temperature (Tg > 500 degrees C), however, the nanowire morphology is dramatically changed into a hybrid structure where highly dense Ge nanoparticles (GeNPs) with a diameter of 5-10 nm are attached onto the Ge nanowires. The nanostructures consist of crystalline Ge-core and very thin graphitic carbon shell. The possible mechanism of anisotropic growth and the control of morphological transition from uniform nanowires to NW/NP hybrid structures are discussed and demonstrated.
RESUMEN
A simple analytic model of a silicon-nanowire (Si-NW) pH sensor is proposed; this model is based on the solution of the Poisson equation in cylindrical coordinates and the nonlinear Poisson-Boltzmann equation for the Si-NW and an electrolyte, respectively. The simulation results obtained using the proposed model agree well with the experimental data. By using the proposed analytic model, the dependence of the electrical properties on the Si-NW diameter and doping concentration is investigated.
RESUMEN
Film-like networks of Cu-doped (0.8-2.5 at.%) ZnO nanowires were successfully synthesized through a facile solution process at a low temperature (<100 degrees C). The pH value of solution plays a key role in controlling the density and quality of the Cu-doped ZnO nanowires and the dopant concentration of ZnO nanowires was controlled by adjusting the Cu2+/Zn2+ concentration ratio during the synthesis. The structural study showed that the as-prepared Cu-doped ZnO nanowires with a narrow diameter range of 20-30 nm were single crystal and grew along [0001] direction. Photoluminescence and electrical conductivity measurements showed that Cu doping can lead to a redshift in bandgap energy and an increase in the resistivity of ZnO. The thermal annealing of the as-grown nanowires at a low temperature (300 degrees C) decreased the defect-related emission within the visible range and increased the electrical conductivity. The high-quality ZnO nanowire network with controlled doping will enable further application to flexible and transparent electronics.
RESUMEN
Spatial light modulators are essential optical elements in applications that require the ability to regulate the amplitude, phase and polarization of light, such as digital holography, optical communications and biomedical imaging. With the push towards miniaturization of optical components, static metasurfaces are used as competent alternatives. These evolved to active metasurfaces in which light-wavefront manipulation can be done in a time-dependent fashion. The active metasurfaces reported so far, however, still show incomplete phase modulation (below 360°). Here we present an all-solid-state, electrically tunable and reflective metasurface array that can generate a specific phase or a continuous sweep between 0 and 360° at an estimated rate of 5.4 MHz while independently adjusting the amplitude. The metasurface features 550 individually addressable nanoresonators in a 250 × 250 µm2 area with no micromechanical elements or liquid crystals. A key feature of our design is the presence of two independent control parameters (top and bottom gate voltages) in each nanoresonator, which are used to adjust the real and imaginary parts of the reflection coefficient independently. To demonstrate this array's use in light detection and ranging, we performed a three-dimensional depth scan of an emulated street scene that consisted of a model car and a human figure up to a distance of 4.7 m.
Asunto(s)
Dispositivos Ópticos , Tecnología de Sensores Remotos/instrumentación , Automóviles , Diseño de Equipo , Humanos , Imagenología Tridimensional , Luz , Cristales Líquidos , Miniaturización , Nanoestructuras/química , Nanotecnología/instrumentación , Prueba de Estudio Conceptual , Tecnología de Sensores Remotos/métodosRESUMEN
A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.
RESUMEN
An analytical and continuous dc model for cylindrical doped surrounding-gate MOSFETs (SGMOSFETs) in the fully-depleted regime is presented. Starting from Poisson's equation, an implicit charge equation is derived approximately by a superposition principle with the exact channel potential and the charge equations in the depletion approximation. Also, a new explicit charge equation is derived from the implicit charge equation. The current equations without any charge-sheet approximation are based on the implicit and explicit charge control models, and both of them are valid for all the operation regions (linear, saturation, and subthreshold) and traces the transition between them without any fitting parameters. In the case of the SGMOSFETs with the fully-depleted condition, both of results simulated from the SGMOSFET models reproduce various 3D simulation results within 5% errors.
RESUMEN
The instantaneous solvent exchange/surface modification (ISE/SM) process for the ambient synthesis of crack-free silica aerogel monoliths with a high production yield was optimized. Monolithic forms of silica wet gels were obtained from aqueous colloidal silica sols prepared via the ion exchange of sodium silicate solutions. Crack-free silica aerogel monoliths were synthesized via an ISE/SM process using isopropyl alcohol/trimethylchlorosilane as a modification agent and n-hexane as a main solvent, followed by ambient drying. The optimum process conditions of the ISE/SM process were investigated by clarifying the reaction mechanism and phenomena. Most effective ranges of process variables on the ISE/SM stage were determined as 0.2500-0.3567 of TMCS/H2O (pore water) in molar ratio and 15-30 of n-hexane/TMCS in volumetric ratio, with a reaction temperature below 283 K. Crack-free silica aerogel monoliths synthesized via these conditions had a well-developed mesoporous structure and excellent properties (bulk density of 0.12-0.14 g/cm3, specific surface area of 724 m2/g), and a high yield (nearly 80%).