Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 79(1): 84-98.e9, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32526163

RESUMEN

Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.


Asunto(s)
Azepinas/farmacología , Encéfalo/patología , Proteínas de Ciclo Celular/metabolismo , Interneuronas/patología , Proteína 2 de Unión a Metil-CpG/fisiología , Síndrome de Rett/patología , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Triazoles/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Femenino , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Factores de Transcripción/genética
2.
Immunity ; 49(6): 1034-1048.e8, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566881

RESUMEN

Single-nucleotide polymorphisms in ETS1 are associated with systemic lupus erythematosus (SLE). Ets1-/- mice develop SLE-like symptoms, suggesting that dysregulation of this transcription factor is important to the onset or progression of SLE. We used conditional deletion approaches to examine the impact of Ets1 expression in different immune cell types. Ets1 deletion on CD4+ T cells, but not B cells or dendritic cells, resulted in the SLE autoimmunity, and this was associated with the spontaneous expansion of T follicular helper type 2 (Tfh2) cells. Ets1-/- Tfh2 cells exhibited increased expression of GATA-3 and interleukin-4 (IL-4), which induced IgE isotype switching in B cells. Neutralization of IL-4 reduced Tfh2 cell frequencies and ameliorated disease parameters. Mechanistically, Ets1 suppressed signature Tfh and Th2 cell genes, including Cxcr5, Bcl6, and Il4ra, thus curbing the terminal Tfh2 cell differentiation process. Tfh2 cell frequencies in SLE patients correlated with disease parameters, providing evidence for the relevance of these findings to human disease.


Asunto(s)
Diferenciación Celular/inmunología , Lupus Eritematoso Sistémico/inmunología , Proteína Proto-Oncogénica c-ets-1/inmunología , Células Th2/inmunología , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Expresión Génica/inmunología , Perfilación de la Expresión Génica , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Células Th2/metabolismo
3.
Nucleic Acids Res ; 52(1): 125-140, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994787

RESUMEN

Maintaining the intracellular iron concentration within the homeostatic range is vital to meet cellular metabolic needs and reduce oxidative stress. Previous research revealed that the haloarchaeon Halobacterium salinarum encodes four diphtheria toxin repressor (DtxR) family transcription factors (TFs) that together regulate the iron response through an interconnected transcriptional regulatory network (TRN). However, the conservation of the TRN and the metal specificity of DtxR TFs remained poorly understood. Here we identified and characterized the TRN of Haloferax volcanii for comparison. Genetic analysis demonstrated that Hfx. volcanii relies on three DtxR transcriptional regulators (Idr, SirR, and TroR), with TroR as the primary regulator of iron homeostasis. Bioinformatics and molecular approaches revealed that TroR binds a conserved cis-regulatory motif located ∼100 nt upstream of the start codon of iron-related target genes. Transcriptomics analysis demonstrated that, under conditions of iron sufficiency, TroR repressed iron uptake and induced iron storage mechanisms. TroR repressed the expression of one other DtxR TF, Idr. This reduced DtxR TRN complexity relative to that of Hbt. salinarum appeared correlated with natural variations in iron availability. Based on these data, we hypothesize that variable environmental conditions such as iron availability appear to select for increasing TRN complexity.


Asunto(s)
Proteínas Bacterianas , Redes Reguladoras de Genes , Haloferax volcanii , Hierro , Proteínas Bacterianas/metabolismo , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Homeostasis/genética , Hierro/metabolismo , Metales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Mol Microbiol ; 121(4): 742-766, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38204420

RESUMEN

Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. "tablespoon"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.


Asunto(s)
Proteínas Arqueales , Haloferax volcanii , Haloferax volcanii/genética , Glucosa/metabolismo , Redes y Vías Metabólicas , Glicoproteínas de Membrana/metabolismo , Fenotipo , Proteínas Arqueales/metabolismo
5.
J Periodontal Res ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699841

RESUMEN

OBJECTIVE AND BACKGROUND: This research aimed to examine the role of C-X-C motif chemokine ligand 5 (CXCL5) and C-X-C motif chemokine ligand 8 (CXCL8; also known as IL-8) in neutrophilic inflammation triggered by peri-implantitis and to shed light on the underlying mechanisms that link them to the development of this condition. MATERIALS: This study included 40 patients who visited the Department of Periodontology at Kyungpook University Dental Hospital. They were divided into two groups based on their condition: healthy implant (HI) group (n = 20) and peri-implantitis (PI) group (n = 20). Biopsy samples of PI tissue were collected from the patients under local anesthesia. HI tissue was obtained using the same method during the second implant surgery. To construct libraries for control and test RNAs, the QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, Inc., Austria) was used according to the manufacturer's instructions. Samples were pooled based on representative cytokines obtained from RNA sequencing results and subjected to Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Hematoxylin and eosin staining, and immunohistochemistry (IHC) analysis were performed to visually assess expression levels and analyze tissue histology. Student's t-test was employed to conduct statistical analyses. RESULTS: Initially, heatmaps were used to examine gene expression variations between the HI and PI groups based on the results of RNA sequencing. Notably, among various cytokines, CXCL5 and CXCL8 had the highest expression levels in the PI group compared with the HI group, and they are known to be associated with inflammatory responses. In the gingival tissues, the expression of genes encoding cytokines such as interleukin (IL)-1ß, tumor necrosis factor-alpha (TNF)-α, interleukin (IL)-6, and CXCL5/CXCL8 was assessed via RT-qPCR. The mRNA expression level of CXCL5/CXCL8 significantly increased in the PI group compared with the HI group (p < .045). Contrarily, the mRNA expression level of interleukin 36 receptor antagonist (IL36RN) significantly decreased (p < .008). IHC enabled examination of the distribution and intensity of CXCL5/CXCL8 protein expression within the tissue samples. Specifically, increased levels of CXCL5/CXCL8 promote inflammatory responses, cellular proliferation, migration, and invasion within the peri-implant tissues. These effects are mediated through the activation of the PI3K/Akt/NF-κB signaling pathway. CONCLUSIONS: This study found that the PI sites had higher gene expression level of CXCL8/CXCL5 in the soft tissue than HI sites, which could help achieve more accurate diagnosis and treatment planning.

6.
Ecotoxicol Environ Saf ; 272: 116057, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335574

RESUMEN

A surge in the number of anthropogenic pollutants has been caused by increasing industrial activities. Nanoplastics are spotlighted as a new aquatic pollutant that are a threat to microbes and larger organisms. Our previous study showed that the subinhibitory concentrations of aquatic pollutants such as phenol and formalin act as signaling molecules and modulate global gene expression and metabolism. In this study, we aimed to investigate the impact of a new type of anthropogenic contaminant, polystyrene (PS) nanoplastics, on the expression of key virulence factors in zoonotic pathogen Edwardsiella piscicida and the assessment of potential changes in the susceptibility of zebrafish as a model host. The TEM data indicated a noticeable change in the cell membrane indicating that PS particles were possibly entering the bacterial cells. Transcriptome analyses performed to identify the differentially expressed genes upon PS exposure revealed that the genes involved in major virulence factor type VI secretion system (T6SS) were down-regulated. However, the expression of T6SS-related genes was recovered from the PS adapted E. piscicida when nanoplastics are free. This demonstrated the hypervirulence of pathogen in infection assays with both cell lines and in vivo zebrafish model. Therefore, this study provides experimental evidence elucidating the direct regulatory impact of nanoplastics influx into aquatic ecosystems on fish pathogenic bacteria, notably influencing the expression of virulence factors.


Asunto(s)
Edwardsiella , Contaminantes Ambientales , Enfermedades de los Peces , Animales , Virulencia/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Microplásticos/toxicidad , Poliestirenos/toxicidad , Ecosistema , Factores de Virulencia/genética , Expresión Génica , Proteínas Bacterianas/metabolismo
7.
Phys Rev Lett ; 131(22): 227101, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101364

RESUMEN

The mean first passage time (MFPT) of random walks is a key quantity characterizing dynamic processes on disordered media. In a random fractal embedded in the Euclidean space, the MFPT is known to obey the power law scaling with the distance between a source and a target site with a universal exponent. We find that the scaling law for the MFPT is not determined solely by the distance between a source and a target but also by their locations. The role of a site in the first passage processes is quantified by the random walk centrality. It turns out that the site of highest random walk centrality, dubbed as a hub, intervenes in first passage processes. We show that the MFPT from a departure site to a target site is determined by a competition between direct paths and indirect paths detouring via the hub. Consequently, the MFPT displays a crossover scaling between a short distance regime, where direct paths are dominant, and a long distance regime, where indirect paths are dominant. The two regimes are characterized by power laws with different scaling exponents. The crossover scaling behavior is confirmed by extensive numerical calculations of the MFPTs on the critical percolation cluster in two dimensional square lattices.

9.
Metab Eng ; 71: 2-12, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34626808

RESUMEN

The petrochemical industry has grown to meet the need for massive production of energy and commodities along with an explosive population growth; however, serious side effects such as greenhouse gas emissions and global warming have negatively impacted the environment. Lignocellulosic biomass with myriad quantities on Earth is an attractive resource for the production of carbon-neutral fuels and chemicals through environmentally friendly processes of microbial fermentation. This review discusses metabolic engineering efforts to achieve economically feasible industrial production of fuels and chemicals from microbial cell factories using the carbohydrate portion of lignocellulosic biomass as substrates. The combined knowledge of systems biology and metabolic engineering has been applied to construct robust platform microorganisms with maximum conversion of monomeric sugars, such as glucose and xylose, derived from lignocellulosic biomass. By comprehensively revisiting carbon conversion pathways, we provide a rationale for engineering strategies, as well as their features, feasibility, and recent representative studies. In addition, we briefly discuss how tools in systems biology can be applied in the field of metabolic engineering to accelerate the development of microbial cell factories that convert lignocellulosic biomass into carbon-neutral fuels and chemicals with economic feasibility.


Asunto(s)
Ingeniería Metabólica , Xilosa , Biocombustibles , Biomasa , Carbono , Fermentación , Lignina , Xilosa/metabolismo
10.
FASEB J ; 35(4): e21507, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33724572

RESUMEN

Retinoic acid-related orphan receptor γ (RORγ) maintains the circadian rhythms of its downstream genes. However, the mechanism behind the transcriptional activation of RORγ itself remains unclear. Here, we demonstrate that transcription of RORγ is activated by heterogeneous nuclear ribonucleoprotein K (hnRNP K) via the poly(C) motif within its proximal promoter. Interestingly, we confirmed the binding of endogenous hnRNP K within RORγ1 and RORγ2 promoter along with the recruitment of RNA polymerase 2 through chromatin immunoprecipitation (ChIP). Furthermore, an assay for transposase accessible chromatin (ATAC)-qPCR showed that hnRNP K induced higher chromatin accessibility within the RORγ1 and RORγ2 promoter. Then we found that the knockdown of hnRNP K lowers RORγ mRNA oscillation amplitude in both RORγ and RORγ-dependent metabolic genes. Moreover, we demonstrated that time-dependent extracellular signal-regulated kinase (ERK) activation controls mRNA oscillation of RORγ and RORγ-dependent metabolic genes through hnRNP K. Taken together, our results provide new insight into the regulation of RORγ by hnRNP K as a transcriptional activator, along with its physiological significance in metabolism.


Asunto(s)
Cromatina/metabolismo , Ritmo Circadiano/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Inmunoprecipitación de Cromatina/métodos , Ritmo Circadiano/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ratones , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología
11.
Int J Mol Sci ; 23(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35628583

RESUMEN

The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.


Asunto(s)
Toxinas Biológicas , Ponzoñas , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Desarrollo de Medicamentos , Dolor/tratamiento farmacológico , Péptidos/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Canales Catiónicos TRPV/metabolismo , Ponzoñas/farmacología , Ponzoñas/uso terapéutico
12.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563152

RESUMEN

Yarrowia lipolytica, the non-conventional yeast capable of high lipogenesis, is a microbial chassis for producing lipid-based biofuels and chemicals from renewable resources such as lignocellulosic biomass. However, the low tolerance of Y. lipolytica against furfural, a major inhibitory furan aldehyde derived from the pretreatment processes of lignocellulosic biomass, has restricted the efficient conversion of lignocellulosic hydrolysates. In this study, the furfural tolerance of Y. lipolytica has been improved by supporting its endogenous detoxification mechanism. Specifically, the endogenous genes encoding the aldehyde dehydrogenase family proteins were overexpressed in Y. lipolytica to support the conversion of furfural to furoic acid. Among them, YALI0E15400p (FALDH2) has shown the highest conversion rate of furfural to furoic acid and resulted in two-fold increased cell growth and lipid production in the presence of 0.4 g/L of furfural. To our knowledge, this is the first report to identify the native furfural detoxification mechanism and increase furfural resistance through rational engineering in Y. lipolytica. Overall, these results will improve the potential of Y. lipolytica to produce lipids and other value-added chemicals from a carbon-neutral feedstock of lignocellulosic biomass.


Asunto(s)
Yarrowia , Ácidos/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Biocombustibles , Furaldehído/farmacología , Lípidos , Yarrowia/metabolismo
13.
Mol Cancer ; 20(1): 107, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419074

RESUMEN

BACKGROUND: Necroptosis is emerging as a new target for cancer immunotherapy as it is now recognized as a form of cell death that increases tumor immunogenicity, which would be especially helpful in treating immune-desert tumors. De novo synthesis of inflammatory proteins during necroptosis appears especially important in facilitating increased anti-tumor immune responses. While late-stage transcription mediated by NF-κB during cell death is believed to play a role in this process, it is otherwise unclear what cell signaling events initiate this transactivation of inflammatory genes. METHODS: We employed tandem-affinity purification linked to mass spectrometry (TAP-MS), in combination with the analysis of RNA-sequencing (RNA-Seq) datasets to identify the Tripartite Motif Protein 28 (TRIM28) as a candidate co-repressor. Comprehensive biochemical and molecular biology techniques were used to characterize the role of TRIM28 in RIPK3 activation-induced transcriptional and immunomodulatory events. The cell composition estimation module was used to evaluate the correlation between RIPK3/TRIM28 levels and CD8+ T cells or dendritic cells (DC) in all TCGA tumors. RESULTS: We identified TRIM28 as a co-repressor that regulates transcriptional activity during necroptosis. Activated RIPK3 phosphorylates TRIM28 on serine 473, inhibiting its chromatin binding activity, thereby contributing to the transactivation of NF-κB and other transcription factors, such as SOX9. This leads to elevated cytokine expression, which then potentiates immunoregulatory processes, such as DC maturation. The expression of RIPK3 has a significant positive association with the tumor-infiltrating immune cells populations in various tumor type, thereby activating anti-cancer responses. CONCLUSION: Our data suggest that RIPK3 activation-dependent derepression of TRIM28 in cancer cells leads to increased immunostimulatory cytokine production in the tumor microenvironment, which then contributes to robust cytotoxic anti-tumor immunity.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética , Microambiente Tumoral/genética , Animales , Sitios de Unión , Muerte Celular , Línea Celular , Citocinas/metabolismo , Humanos , Ratones , Modelos Biológicos , FN-kappa B/metabolismo , Necroptosis , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica , Transducción de Señal
14.
Nanotechnology ; 32(48)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34399420

RESUMEN

As the computing paradigm has shifted toward edge computing, improving the security of edge devices is attracting significant attention. However, because edge devices have limited resources in terms of power and area, it is difficult to apply a conventional cryptography system to protect them. On the other hand, as a simple security application, a physical unclonable function (PUF) can be implemented without power and area problems because it provides a security key by utilizing process variations without additional external circuits. Ferroelectric tunnel junctions (FTJs) are 2-terminal devices that store information by changing the resistance of a ferroelectric material, where the resistance is determined by the polarization states of the ferroelectric domains. Because polycrystalline ferroelectric materials have a multi-domain nature, domain variation can also be used as a randomness source to induce cell-to-cell variations along with process variations. In this paper, we demonstrate PUF operations of a low-power, small area 16 × 16 hafnium oxide (pure-HfOx)-based FTJ array using certain metrics. It is clear that the proposed array consisting of scaled FTJs has adequate randomness for security applications such that the array-level PUF operations are robust against model-based machine learning attacks.

15.
Int J Mol Sci ; 21(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481599

RESUMEN

Piezo channels are mechanosensitive ion channels. Piezo1 is primarily expressed in nonsensory tissues, whereas Piezo2 is predominantly found in sensory tissues, including dorsal root ganglion (DRG) neurons. However, a recent study demonstrated the intracellular calcium response to Yoda1, a selective Piezo1 agonist, in trigeminal ganglion (TG) neurons. Herein, we investigate the expression of Piezo1 mRNA and protein in mouse and human DRG neurons and the activation of Piezo1 via calcium influx by Yoda1. Yoda1 induces inward currents mainly in small- (< 25 µm) and medium-sized (25-35 µm) mouse DRG neurons. The Yoda1-induced Ca2+ response is inhibited by cationic channel blocker, ruthenium red and cationic mechanosensitive channel blocker, GsMTx4. To confirm the specific inhibition of Piezo1, we performed an adeno-associated virus serotype 2/5 (AAV2/5)-mediated delivery of short hairpin RNA (shRNA) into mouse DRG neurons. AAV2/5 transfection downregulates piezo1 mRNA expression and reduces Ca2+ response by Yoda1. Piezo1 also shows physiological functions with transient receptor potential vanilloid 1 (TRPV1) in the same DRG neurons and is regulated by the activation of TRPV1 in mouse DRG sensory neurons. Overall, we found that Piezo1 has physiological functions in DRG neurons and that TRPV1 activation inhibits an inward current induced by Yoda1.


Asunto(s)
Ganglios Espinales/metabolismo , Canales Iónicos/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Dependovirus/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Mecanotransducción Celular , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Pirazinas/farmacología , ARN Interferente Pequeño/metabolismo , Canales Catiónicos TRPV/metabolismo , Tiadiazoles/farmacología , Ganglio del Trigémino/metabolismo
16.
Phys Rev Lett ; 123(16): 160602, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702370

RESUMEN

Critical jamming transitions are characterized by an astonishing degree of universality. Analytic and numerical evidence points to the existence of a large universality class that encompasses finite and infinite dimensional spheres and continuous constraint satisfaction problems (CCSP) such as the nonconvex perceptron and related models. In this Letter we investigate multilayer neural networks (MLNN) learning random associations as models for CCSP that could potentially define different jamming universality classes. As opposed to simple perceptrons and infinite dimensional spheres, which are described by a single effective field in terms of which the constraints appear to be one dimensional, the description of MLNN involves multiple fields, and the constraints acquire a multidimensional character. We first study the models numerically and show that similarly to the perceptron, whenever jamming is isostatic, the sphere universality class is recovered, we then write the exact mean-field equations for the models and identify a dimensional reduction mechanism that leads to a scaling regime identical to the one of spheres.

17.
J Nanosci Nanotechnol ; 19(10): 6066-6069, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026909

RESUMEN

In this paper, we proposed and fabricated a polysilicon-based four-terminal synaptic transistor. The device has an asymmetric dual-gate structure. The top gate, which uses a thin SiO2 layer as the gate dielectric, is the input terminal of the synaptic transistor, which receives spikes from pre-synaptic neurons. Meanwhile, a nitride trapping layer was inserted between the channel and the bottom gate to serve as a non-volatile memory. The bottom gate is the node that receives the post-neuron feedback signals and adjusts the synaptic weight. With this double-gate structure, the proposed artificial synapse can perform short-/long-term memory operations. In addition to the basic unit cell characteristics, a highly integrated synapse array structure is also proposed. In our array structure, the top gate is tied in the word-line direction to accept the input signal. Drain contacts are also tied in the same direction. With regard to bit-line direction, the source terminals are tied to carry post-synaptic signals and the bottom gate line receives feedback signals from the post-synaptic neurons.


Asunto(s)
Dióxido de Silicio , Transistores Electrónicos , Memoria a Largo Plazo , Neuronas , Sinapsis
18.
J Nanosci Nanotechnol ; 19(10): 6417-6421, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026971

RESUMEN

In this work, we developed a SPICE compact model of a dual-gate positive-feedback field-effect transistor (FBFET) for circuit simulations by fitting the model to measurement results. We fabricated a FBFET and investigated the DC and transient characteristics. The fabricated FBFET has an extremely low sub-threshold slope and a low off current. The FBFET operates as a forward-biased PN diode after the device is turned on due to the positive feedback loop between the integrated charges and the potential barrier. When enough electrons are accumulated in the floating body, the potential barrier is lowered and the FBFET is turned on rapidly, and due to the integrated charges, the FBFET has memory characteristics which approximate hose of 1T-DRAM. Reflecting these electrical characteristics of the FBFET, we undertook SPICE modeling and obtained simulation results that were similar to the measurement characteristics. Finally, we implement a modified inverter with the FBFET connected in parallel with an n-type MOSFET (NMOS). Due to the superior sub-threshold characteristics of the FBFET, it effectively suppresses the sub-threshold currents.

19.
J Nanosci Nanotechnol ; 19(10): 6776-6780, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31027028

RESUMEN

In this study, we proposed an online learning method using spike-timing dependent plasticity (STDP) whose operation is analogous to gradient descent, the most successful learning algorithm for nonspiking artificial neural networks (ANNs). With a model of a 4-terminal synaptic transistor we previously reported, a single-layer neural network implemented on the cross-point array was simulated by MATLAB to train binary MNIST samples with gradient descent algorithm. In addition, a proposed pulse scheme based on STDP was used to train the same network by applying teaching pulses having positive and negative timing differences with respect to input pulses to the back gate of the synaptic transistors. By comparing the extracted synaptic weight maps from both methods, therefore, the network trained by gradient descent was almost equally reproduced by the proposed method which was performed fully on hardware without computer calculation.


Asunto(s)
Educación a Distancia , Plasticidad Neuronal , Algoritmos , Redes Neurales de la Computación , Neuronas
20.
J Nanosci Nanotechnol ; 19(10): 6746-6749, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31027022

RESUMEN

In this paper, we analyze hot carrier injection (HCI) in an asymmetric dual gate structure with a charge storage layer. In a floating gate device, holes injected by HCI can move freely in the valence band, since the channel potential is constant. In case of charge trapping layer, however, holes are trapped only in the drain side where impact ionization occurs. Therefore, only small threshold voltage shift occurs because channel formation is enhanced only in the drain side. When the gate length is under 100 nm, trapped holes in the drain side start to control the whole channel. Thus, we expect that HCI into the charge trapping layer can be used as a non-volatile memory (NVM) mechanism in short channel devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA