Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Cogn ; 177: 106160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670051

RESUMEN

While procedural learning (PL) has been implicated in delayed motor skill observed in developmental coordination disorder (DCD), few studies have considered the impact of co-occurring attentional problems. Furthermore, the neurostructural basis of PL in children remains unclear. We investigated PL in children with DCD while controlling for inattention symptoms, and examined the role of fronto-basal ganglia-cerebellar morphology in PL. Fifty-nine children (6-14 years; nDCD = 19, ncontrol = 40) completed the serial reaction time (SRT) task to measure PL. The Attention-Deficit Hyperactivity Disorder Rating Scale-IV was administered to measure inattention symptoms. Structural T1 images were acquired for a subset of participants (nDCD = 10, ncontrol = 28), and processed using FreeSurfer. Volume was extracted for the cerebellum, basal ganglia, and frontal regions. After controlling for inattention symptoms, the reaction time profile of controls was consistent with learning on the SRT task. This was not the case for those with DCD. SRT task performance was positively correlated with cerebellar cortical volume, and children with DCD trended towards lower cerebellar volume compared to controls. Children with DCD may not engage in PL during the SRT task in the same manner as controls, with this differential performance being associated with atypical cerebellar morphology.


Asunto(s)
Cerebelo , Aprendizaje , Imagen por Resonancia Magnética , Trastornos de la Destreza Motora , Tiempo de Reacción , Humanos , Niño , Masculino , Femenino , Adolescente , Trastornos de la Destreza Motora/fisiopatología , Trastornos de la Destreza Motora/diagnóstico por imagen , Tiempo de Reacción/fisiología , Cerebelo/diagnóstico por imagen , Cerebelo/fisiopatología , Aprendizaje/fisiología , Imagen por Resonancia Magnética/métodos , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Neuroimagen/métodos , Atención/fisiología , Ganglios Basales/fisiopatología , Ganglios Basales/diagnóstico por imagen , Desempeño Psicomotor/fisiología , Destreza Motora/fisiología
2.
Eur J Neurosci ; 58(3): 2838-2852, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37317510

RESUMEN

Neuroimaging resting state paradigms have revealed synchronised oscillatory activity is present even in the absence of completing a task or mental operation. One function of this neural activity is likely to optimise the brain's sensitivity to forthcoming information that, in turn, likely promotes subsequent learning and memory outcomes. The current study investigated whether this extends to implicit forms of learning. A total of 85 healthy adults participated in the study. Resting state electroencephalography was first acquired from participants before they completed a serial reaction time task. On this task, participants implicitly learnt a visuospatial-motor sequence. Permutation testing revealed a negative correlation between implicit sequence learning and resting state power in the upper theta band (6-7 Hz). That is, lower levels of resting state power in this frequency range were associated with superior levels of implicit sequence learning. This association was observed at midline-frontal, right-frontal and left-posterior electrodes. Oscillatory activity in the upper theta band supports a range of top-down processes including attention, inhibitory control and working memory, perhaps just for visuospatial information. Our results may be indicating that disengaging theta-supported top-down attentional processes improves implicit learning of visuospatial-motor information that is embedded in sensory input. This may occur because the brain's sensitivity to this type of information is optimally achieved when learning is driven by bottom-up processes. Moreover, the results of this study further demonstrate that resting state synchronised brain activity influences subsequent learning and memory.


Asunto(s)
Electroencefalografía , Individualidad , Adulto , Humanos , Aprendizaje , Memoria a Corto Plazo , Tiempo de Reacción , Ritmo Teta
3.
Hum Brain Mapp ; 44(16): 5504-5513, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37608610

RESUMEN

It is well documented that attention-deficit hyperactivity disorder (ADHD) often presents with co-occurring motor difficulties. However, little is known about the biological mechanisms that explain compromised motor skills in approximately half of those with ADHD. To provide insight into the neurobiological basis of poor motor outcomes in ADHD, this study profiled the development of white matter organization within the cortico-spinal tract (CST) in adolescents with ADHD with and without co-occurring motor problems, as well as non-ADHD control children with and without motor problems. Participants were 60 children aged 9-14 years, 27 with a history of ADHD and 33 controls. All underwent high-angular resolution diffusion MRI data at up to three time points (115 in scans total). We screened for motor impairment in all participants at the third time point (≈14 years) using the Developmental Coordination Disorder Questionnaire (DCD-Q). Following pre-processing of diffusion MRI scans, fixel-based analysis was performed, and the bilateral CST was delineated using TractSeg. Mean fiber density (FD) and fiber cross-section (FC) were extracted for each tract at each time-point. To investigate longitudinal trajectories of fiber development, linear mixed models were performed separately for the left and right CST, controlling for nuisance variables. To examine possible variations in fiber development between groups, we tested whether the inclusion of group and the interaction between age and group improved model fit. At ≈10 years, those with ADHD presented with lower FD within the bilateral CST relative to controls, irrespective of their prospective motor status. While these microstructural abnormalities persisted into adolescence for individuals with ADHD and co-occurring motor problems, they resolved for those with ADHD alone. Divergent maturational pathways of motor networks (i.e., the CST) may, at least partly, explain motor problems individuals with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Niño , Humanos , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Tractos Piramidales/diagnóstico por imagen , Estudios Prospectivos , Encéfalo , Sustancia Blanca/diagnóstico por imagen
4.
Hum Brain Mapp ; 44(8): 3394-3409, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36988503

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a prevalent childhood neurodevelopmental disorder. Given the profound brain changes that occur during childhood and adolescence, it is important to examine longitudinal changes of both functional and structural brain connectivity across development in ADHD. This study aimed to examine the development of functional and structural connectivity in children with ADHD compared to controls using graph metrics. One hundred and seventy five individuals (91 children with ADHD and 84 non-ADHD controls) participated in a longitudinal neuroimaging study with up to three waves. Graph metrics were derived from 370 resting state fMRI (197 Control, 173 ADHD) and 297 diffusion weighted imaging data (152 Control, 145 ADHD) acquired between the ages of 9 and 14. For functional connectivity, children with ADHD (compared to typically developing children) showed lower degree, local efficiency and betweenness centrality predominantly in parietal, temporal and visual cortices and higher degree, local efficiency and betweenness centrality in frontal, parietal, and temporal cortices. For structural connectivity, children with ADHD had lower local efficiency in parietal and temporal cortices and, higher degree and betweenness centrality in frontal, parietal and temporal cortices. Further, differential developmental trajectories of functional and structural connectivity for graph measures were observed in higher-order cognitive and sensory regions. Our findings show that topology of functional and structural connectomes matures differently between typically developing controls and children with ADHD during childhood and adolescence. Specifically, functional and structural neural circuits associated with sensory and various higher order cognitive functions are altered in children with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Conectoma , Adolescente , Humanos , Niño , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Conectoma/métodos , Cognición , Mapeo Encefálico , Vías Nerviosas/diagnóstico por imagen
5.
Cerebellum ; 22(6): 1243-1249, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36482028

RESUMEN

Alterations in cerebellar morphology relative to controls have been identified in children with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and developmental coordination disorder (DCD). However, it is not clear if common cerebellar regions are affected in each neurodevelopmental disorder and whether cerebellar morphological changes reflect a generic developmental vulnerability, or disorder-specific characteristic. The present study concatenated anatomical MRI scans from five existing cohorts, resulting in data from 252 children between the age of 7 and 12 years (ASD = 58, ADHD = 86, DCD = 22, Controls = 86). The ACAPULCO processing pipeline for cerebellar segmentation was conducted on T1-weighted images. A voxel-wise approach with general linear model was used to compare grey-matter volume of the 27 cerebellar lobules between each clinical group and controls. Our findings revealed that the ADHD group showed lower grey-matter volume in the left Crus I - part of the executive/non-motor portion of the cerebellum, relative to controls (p = 0.02). This no longer remained significant after controlling for medication status. There were no regions of significant differences in volume of the cerebellar lobules in ASD or DCD compared to controls. Future work will conduct harmonisation of behavioural data (cognitive and motor outcomes) across cohorts, enabling more advanced analyses to identify symptom cluster across neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Niño , Trastorno del Espectro Autista/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Cerebelo/diagnóstico por imagen , Corteza Cerebral
6.
J Int Neuropsychol Soc ; 28(9): 926-936, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34674790

RESUMEN

OBJECTIVE: Evidence from adult literature shows the involvement of cortical grey matter areas of the frontoparietal lobe and the white matter bundle, the superior longitudinal fasciculus (SLF) in motor planning. This is yet to be confirmed in children. METHOD: A multimodal study was designed to probe the neurostructural basis of childhood motor planning. Behavioural (motor planning), magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI) data were acquired from 19 boys aged 8-11 years. Motor planning was assessed using the one and two colour sequences of the octagon task. The MRI data were preprocessed and analysed using FreeSurfer 6.0. Cortical thickness and cortical surface area were extracted from the caudal middle frontal gyrus (MFG), superior frontal gyrus (SFG), precentral gyrus (PcG), supramarginal gyrus (SMG), superior parietal lobe (SPL) and the inferior parietal lobe (IPL) using the Desikan-Killiany atlas. The DWI data were preprocessed and analysed using ExploreDTI 4.8.6 and the white matter tract, the SLF was reconstructed. RESULTS: Motor planning of the two colour sequence was associated with cortical thickness of the bilateral MFG and left SFG, PcG, IPL and SPL. The right SLF was related to motor planning for the two colour sequence as well as with the left cortical thickness of the SFG. CONCLUSION: Altogether, morphology within frontodorsal circuity, and the white matter bundles that support communication between them, may be associated with individual differences in childhood motor planning.


Asunto(s)
Sustancia Blanca , Adulto , Corteza Cerebral , Niño , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
7.
J Integr Neurosci ; 21(2): 57, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35364645

RESUMEN

Frontal lobe volume has been extensively researched in individuals with Autism spectrum disorder (ASD), though findings are yet to be summarised to explain the developmental trends of frontal lobe volume. The aim of the present study is to consolidate all existing frontal lobe volume and age data of autistic individuals below 30 years of age, and compare this data to non-autistic (N-ASD) controls. Following a systematic review, frontal lobe volume data were obtained from seven papers. Raw data, or the means and standard deviations of frontal lobe volume, and age, were obtained from the studies giving 372 autistic and 190 N-ASD participants. Data were plotted and analysed. Findings revealed that regression lines of fit for ASD (R2L⁢i⁢n⁢e⁢a⁢r = 0.33; R2Q⁢u⁢a⁢d⁢r⁢a⁢t⁢i⁢c = 0.52) and N-ASD (R2L⁢i⁢n⁢e⁢a⁢r = 0.14; R2Q⁢u⁢a⁢d⁢r⁢a⁢t⁢i⁢c = 0.39) were significantly different by diagnosis (linear p = 0.002, quadratic p = 0.02) with quadratic models providing significantly better fit within ASD (p < 0.001) and N-ASD (p < 0.001). Additional analyses revealed that frontal lobe volume was greater in autistic individuals than N-ASD between two and four years (F(1,31) = 12.965, p < 0.005, η2 = 0.291). In the present study, there were distinct developmental trends for frontal lobe volume between ASD and N-ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/diagnóstico por imagen , Lóbulo Frontal/diagnóstico por imagen , Humanos
8.
Behav Res Methods ; 54(3): 1530-1540, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34751923

RESUMEN

The stop-signal paradigm has become ubiquitous in investigations of inhibitory control. Tasks inspired by the paradigm, referred to as stop-signal tasks, require participants to make responses on go trials and to inhibit those responses when presented with a stop-signal on stop trials. Currently, the most popular version of the stop-signal task is the 'choice-reaction' variant, where participants make choice responses, but must inhibit those responses when presented with a stop-signal. An alternative to the choice-reaction variant of the stop-signal task is the 'anticipated response inhibition' task. In anticipated response inhibition tasks, participants are required to make a planned response that coincides with a predictably timed event (such as lifting a finger from a computer key to stop a filling bar at a predefined target). Anticipated response inhibition tasks have some advantages over the more traditional choice-reaction stop-signal tasks and are becoming increasingly popular. However, currently, there are no openly available versions of the anticipated response inhibition task, limiting potential uptake. Here, we present an open-source, free, and ready-to-use version of the anticipated response inhibition task, which we refer to as the OSARI (the Open-Source Anticipated Response Inhibition) task.


Asunto(s)
Inhibición Psicológica , Desempeño Psicomotor , Humanos , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología
9.
Neuroimage ; 226: 117583, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221438

RESUMEN

PURPOSE: Despite the important role of manual dexterity in child development, the neurobiological mechanisms associated with manual dexterity in childhood remain unclear. We leveraged fixel-based analysis (FBA) to examine the longitudinal association between manual dexterity and the development of white matter structural properties in the corticospinal tract (CST). METHODS: High angular diffusion weighted imaging (HARDI) data were acquired for 44 right-handed typically developing children (22 female) aged 9-13 across two timepoints (timepoint 1: mean age 10.5 years ± 0.5 years, timepoint 2: 11.8 ± 0.5 years). Manual dexterity was assessed using the Grooved Pegboard Test, a widely used measure of manual dexterity. FBA-derived measures of fiber density and morphology were generated for the CST at each timepoint. Connectivity-based fixel enhancement and mixed linear modelling were used to examine the longitudinal association between manual dexterity and white matter structural properties of the CST. RESULTS: Longitudinal mixed effects models showed that greater manual dexterity of the dominant hand was associated with increased fiber cross-section in the contralateral CST. Analyses further demonstrated that the rate of improvement in manual dexterity was associated with the rate of increase in fiber cross-section in the contralateral CST between the two timepoints. CONCLUSION: Our longitudinal data suggest that the development of manual dexterity in late childhood is associated with maturation of the CST. These findings significantly enhance our understanding of the neurobiological systems that subserve fine motor development and provide an important step toward mapping normative trajectories of fine motor function against microstructural and morphological development in childhood.


Asunto(s)
Desarrollo Infantil , Mano , Destreza Motora/fisiología , Tractos Piramidales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adolescente , Niño , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Lateralidad Funcional , Humanos , Estudios Longitudinales , Masculino , Tractos Piramidales/crecimiento & desarrollo , Sustancia Blanca/crecimiento & desarrollo
10.
Neuroimage ; 241: 118417, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34298083

RESUMEN

Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organization. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "Fixel-Based Analysis" (FBA) framework, which implements bespoke solutions to this end. It has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to Fixel-Based Analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of all current FBA studies, categorized across a broad range of neuro-scientific domains, listing key design choices and summarizing their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the FBA framework, and outline some directions and future opportunities.


Asunto(s)
Encéfalo/citología , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancia Blanca/diagnóstico por imagen , Encéfalo/fisiología , Imagen de Difusión por Resonancia Magnética/tendencias , Humanos , Procesamiento de Imagen Asistido por Computador/tendencias , Fibras Nerviosas/fisiología , Sustancia Blanca/fisiología
11.
J Neurosci Res ; 99(12): 3238-3249, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34747052

RESUMEN

The mirror neuron system (MNS) has been theorized to play a neurobiological role in a number of social cognitive abilities and is commonly indexed putatively in humans via interpersonal motor resonance (IMR) and mu suppression. Although both indices are thought to measure similar neuronal populations (i.e., "mirror neurons"), it has been suggested that these methods are unrelated, and therefore, incompatible. However, prior studies reporting no relationships were typically conducted in small and underpowered samples. Thus, we aimed to investigate this potential association in a large sample of neurotypical adults (N = 116; 72 females). Participants underwent transcranial magnetic stimulation (TMS), electromyography (EMG), and electroencephalography (EEG) during the observation of videos of actors performing grasping actions in order to index IMR and mu suppression (in beta, lower alpha, and upper alpha bandwidths). A series of linear regressions revealed no associations between IMR and each of the mu suppression bandwidths. Supplementary Bayesian analyses provided further evidence in favor of the null (B01  = 8.85-8.93), providing further support for no association between the two indices of MNS activity. Our findings suggest that these two measures may indeed be unrelated indices that perhaps assess different neurophysiological aspects of the MNS. These results have important implications for future studies examining the MNS.


Asunto(s)
Neuronas Espejo , Adulto , Teorema de Bayes , Electroencefalografía , Femenino , Humanos , Estimulación Magnética Transcraneal
12.
Neuropsychol Rev ; 31(1): 14-57, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32876854

RESUMEN

Theoretical perspectives suggest that the mirror neuron system (MNS) is an important neurobiological contributor to empathy, yet empirical support is mixed. Here, we adopt a summary model for empathy, consisting of motor, emotional, and cognitive components of empathy. This review provides an overview of existing empirical studies investigating the relationship between putative MNS activity and empathy in healthy populations. 52 studies were identified that investigated the association between the MNS and at least one domain of empathy, representing data from 1044 participants. Our results suggest that emotional and cognitive empathy are moderately correlated with MNS activity, however, these domains were mixed and varied across techniques used to acquire MNS activity (TMS, EEG, and fMRI). Few studies investigated motor empathy, and of those, no significant relationships were revealed. Overall, results provide preliminary evidence for a relationship between MNS activity and empathy. However, our findings highlight methodological variability in study design as an important factor in understanding this relationship. We discuss limitations regarding these methodological variations and important implications for clinical and community translations, as well as suggestions for future research.


Asunto(s)
Neuronas Espejo , Emociones , Empatía , Humanos , Imagen por Resonancia Magnética
13.
Brain Topogr ; 34(1): 1-5, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141335

RESUMEN

Interhemispheric inhibition (IHI) is a dual-site TMS protocol measuring inhibitory interactions between the primary motor cortices (M1). IHI is performed by applying an initial conditioning stimulus followed by a test stimulus to the contralateral M1. Conventionally, the response in the contralateral hand to the conditioning TMS pulse is either not measured, or discarded. The aim of this experiment was to investigate whether MEPs evoked from these conditioning stimuli can be utilised as non-conditioned, or 'baseline', responses, and therefore expedite IHI data collection. We evaluated short-latency (10 ms) and long-latency (40 ms) IHI bidirectionally in 14 healthy participants. There was no difference in MEP amplitudes evoked by conventional single TMS pulses randomly inserted into IHI blocks, and those evoked by the conditioning stimulus. Nor was there any significant difference in IHI magnitude when using single pulse MEPs or conditioning stimulus MEPs as baseline responses. The utilisation of conditioning stimuli dispenses with the need to insert dedicated single TMS pulses into IHI blocks, allowing for additional IHI data to be collected in the same amount of time.


Asunto(s)
Potenciales Evocados Motores , Estimulación Magnética Transcraneal , Electromiografía , Lateralidad Funcional , Humanos , Músculo Esquelético , Inhibición Neural
14.
Cerebellum ; 19(5): 617-628, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32445170

RESUMEN

Cerebellar volume, in particular vermal lobule areas VI-VII, have been extensively researched in individuals with autism spectrum disorder (ASD), although findings are often unclear. The aim of the present study is to consolidate all existing cerebellar and age data of individuals with ASD, and compare this data to typically developing (TD) controls. Raw data, or the means and standard deviations of cerebellar volume and age, were obtained from 17 studies (NCerebellum: 421 ASD and 370 TD participants; NVI-VII: 506 ASD and 290 TD participants). Total cerebellar volume, or VI-VII area, was plotted against age and lines of fit of ASD and TD data were compared. Mean differences in cerebellar volume and VI-VII area between participants with ASD and TD participants were then compared via ANCOVA analyses. Findings revealed multiple differences in VI-VII area between participants with ASD and TD participants below 18 years of age. Additionally, cerebellar volume was greater in males with ASD than TD males between 2 and 4 years. In the present study, cerebellar volume and VI-VII area show different rates of change across age for those with autism compared with those without. These morphological differences provide a neurobiological justification to investigate related behavioural correlates.


Asunto(s)
Trastorno del Espectro Autista/patología , Trastorno Autístico/patología , Corteza Cerebelosa/patología , Cerebelo/patología , Adolescente , Adulto , Factores de Edad , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
15.
Eur J Neurosci ; 50(5): 2877-2892, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30758079

RESUMEN

Mirror neurons (MN) have been proposed as the neural substrate for a wide range of clinical, social and cognitive phenomena. Over the last decade, a commonly used tool for investigating MN activity in the human brain has been functional magnetic resonance (fMRI) repetition suppression (RS) paradigms. However, the available evidence is mixed, largely owing to inconsistent application of the methodological criteria necessary to infer MN properties. This raises concerns about the degree to which one can infer the presence (or absence) of MN activity from earlier accounts that adopted RS paradigms. We aimed to clarify this issue using a well-validated fMRI RS paradigm and tested for mirror properties by rigorously applying the widely accepted criteria necessary to demonstrate MN activity using traditional univariate techniques and Multivariate Pattern Analysis (MVPA). While univariate whole brain analysis in healthy adults showed uni-modal RS effects within the supplementary motor area, no evidence for cross-modal RS effects consistent with mirror neuron activity was found. MVPA on the other hand revealed a region along the anterior intraparietal sulcus that met the criteria for MN activity. Taken together, these results clarify disparate evidence from earlier RS studies, highlighting that traditional univariate analysis of RS data may not be sensitive for detecting MN activity when rigorously applying the requisite criteria. In light of these findings, we recommend that short of increasing sample sizes substantially, future studies using RS paradigms to investigate MNs across the human brain consider the use of MVPA.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuronas Espejo/fisiología , Adolescente , Adulto , Encéfalo/fisiología , Mapeo Encefálico , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Desempeño Psicomotor/fisiología , Adulto Joven
16.
J Int Neuropsychol Soc ; 25(3): 331-335, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30691540

RESUMEN

OBJECTIVES: This study examined the effects of anodal transcranial direct current stimulation (a-tDCS) on sentence and word comprehension in healthy adults. METHODS: Healthy adult participants, aged between 19 and 30 years, received either a-tDCS over the left inferior frontal gyrus (n=18) or sham stimulation (n=18). Participants completed sentence comprehension and word comprehension tasks before and during stimulation. Accuracy and reaction times (RTs) were recorded as participants completed both tasks. RESULTS: a-tDCS was found to significantly decrease RT on the sentence comprehension task compared to baseline. There was no change in RT following sham stimulation. a-tDCS was not found to have a significant effect on accuracy. Also, a-tDCS did not affect accuracy or RTs on the word comprehension task. CONCLUSIONS: The study provides evidence that non-invasive anodal electrical stimulation can modulate sentence comprehension in healthy adults, at least compared to their baseline performance. (JINS, 2019, 25, 331-335).


Asunto(s)
Comprensión/fisiología , Reconocimiento Visual de Modelos/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Percepción del Habla/fisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Reconocimiento Visual de Modelos/efectos de la radiación , Placebos , Tiempo de Reacción/fisiología , Adulto Joven
17.
Cerebellum ; 16(1): 168-177, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27189071

RESUMEN

The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.


Asunto(s)
Adaptación Fisiológica/fisiología , Cerebelo/fisiología , Estimulación Transcraneal de Corriente Directa , Caminata/fisiología , Adulto , Análisis de Varianza , Atención , Fenómenos Biomecánicos , Cognición/fisiología , Estudios Cruzados , Método Doble Ciego , Fatiga/etiología , Femenino , Lateralidad Funcional , Humanos , Masculino , Pruebas Neuropsicológicas , Dolor/etiología , Dimensión del Dolor , Tiempo de Reacción , Estimulación Transcraneal de Corriente Directa/efectos adversos , Estimulación Transcraneal de Corriente Directa/métodos , Adulto Joven
18.
J Int Neuropsychol Soc ; 23(2): 185-193, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28205500

RESUMEN

OBJECTIVES: It is unclear whether the primary motor cortex (PMC) is involved in the mental simulation of movement [i.e., motor imagery (MI)]. The present study aimed to clarify PMC involvement using a highly novel adaptation of the hand laterality task (HLT). METHODS: Participants were administered single-pulse transcranial magnetic stimulation (TMS) to the hand area of the left PMC (hPMC) at either 50 ms, 400 ms, or 650 ms post stimulus presentation. Motor-evoked potentials (MEPs) were recorded from the right first dorsal interosseous via electromyography. To avoid the confound of gross motor response, participant response (indicating left or right hand) was recorded via eye tracking. Participants were 22 healthy adults (18 to 36 years), 16 whose behavioral profile on the HLT was consistent with the use of a MI strategy (MI users). RESULTS: hPMC excitability increased significantly during HLT performance for MI users, evidenced by significantly larger right hand MEPs following single-pulse TMS 50 ms, 400 ms, and 650 ms post stimulus presentation relative to baseline. Subsequent analysis showed that hPMC excitability was greater for more complex simulated hand movements, where hand MEPs at 50 ms were larger for biomechanically awkward movements (i.e., hands requiring lateral rotation) compared to simpler movements (i.e., hands requiring medial rotation). CONCLUSIONS: These findings provide support for the modulation of PMC excitability during the HLT attributable to MI, and may indicate a role for the PMC during MI. (JINS, 2017, 23, 185-193).


Asunto(s)
Adaptación Fisiológica/fisiología , Potenciales Evocados Motores/fisiología , Mano/fisiología , Imaginación/fisiología , Corteza Motora/fisiología , Movimiento/fisiología , Adolescente , Adulto , Electromiografía , Femenino , Lateralidad Funcional , Humanos , Masculino , Pruebas Neuropsicológicas , Estimulación Luminosa , Tiempo de Reacción/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
19.
Brain Cogn ; 109: 84-95, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27648975

RESUMEN

INTRODUCTION: Previous research indicates that children with Developmental Coordination Disorder (DCD) show deficits performing online corrections, an issue exacerbated by adding inhibitory constraints; however, cross-sectional data suggests that these deficits may reduce with age. Using a longitudinal design, the aim of the study presented here was to model the coupling that occurs between inhibitory systems and (predictive) online control in typically developing children (TDC) and in those with Developmental Coordination Disorder (DCD) over an extended period of time, using a framework of interactive specialization. We predicted that TDC would show a non-linear growth pattern, consistent with re-organisation in the coupling during the middle childhood period, while DCD would display a developmental lag. METHOD: A group of 196 children (111 girls and 85 boys) aged between 6 and 12years participated in the study. Children were classified as DCD according to research criteria. Using a cohort sequential design, both TDC and DCD groups were divided into age cohorts. Predictive (online) control was defined operationally by performance on a Double-Jump Reaching Task (DJRT), which was assessed at 6-month intervals over two years (5 time points in total). Inhibitory control was examined using an anti-jump condition of the DJRT paradigm whereby children were instructed to touch a target location in the hemispace opposite a cued location. RESULTS: For the TDC group, model comparison using growth curve analysis revealed that a quadratic trend was the most appropriate fit with evidence of rapid improvement in anti-reach performance up until middle childhood (around 8-9years of age), followed by a more gradual rate of improvement into late childhood and early adolescence. This pattern was evident on both chronometric and kinematic measures. In contrast, for children with DCD, a linear function provided the best to fit on the key metrics, with a slower rate of improvement than controls. CONCLUSION: We conclude that children with DCD require a more extended period of development to effectively couple online motor control and executive systems when completing anti-reach movements, whereas TDC show rapid improvement in early and middle childhood. These group differences in growth curves are likely to reflect a maturational lag in the development of motor-cognitive networks in children with DCD.


Asunto(s)
Desarrollo Infantil/fisiología , Inhibición Psicológica , Actividad Motora/fisiología , Trastornos de la Destreza Motora/fisiopatología , Desempeño Psicomotor/fisiología , Niño , Femenino , Humanos , Estudios Longitudinales , Masculino
20.
J Exp Child Psychol ; 140: 74-91, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26232592

RESUMEN

We investigated the purported association between developmental changes in the efficiency of online reaching corrections and improved action representation. Younger children (6-7 years), older children (8-12 years), adolescents (13-17 years), and young adults (18-24 years) completed a double-step reaching paradigm and a motor imagery task. Results showed similar nonlinear performance improvements across both tasks, typified by substantial changes in efficiency after 6 or 7 years followed by incremental improvements. Regression showed that imagery ability significantly predicted reaching efficiency and that this association stayed constant across age. Findings provide the first empirical evidence that more efficient online control through development is predicted, partly, by improved action representation.


Asunto(s)
Desarrollo Infantil/fisiología , Desempeño Psicomotor , Adolescente , Niño , Femenino , Humanos , Imaginación , Masculino , Análisis de Regresión , Análisis y Desempeño de Tareas , Interfaz Usuario-Computador , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA