Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Allergy Immunol ; 33(10): e13864, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36282133

RESUMEN

BACKGROUND AND AIMS: Moisture damage increases the risk for respiratory disorders in childhood. Our aim was to determine whether early age residential exposure to inspector-observed moisture damage or mold is associated with different wheezing phenotypes later in childhood. METHODS: Building inspections were performed by civil engineers, in a standardized manner, in the children's homes-mostly single family and row houses (N = 344)-in the first year of life. The children were followed up with repeated questionnaires until the age of 6 years and wheezing phenotypes-never/infrequent, transient, intermediate, late onset, and persistent-were defined using latent class analyses. The multinomial logistic regression model was used for statistical analysis. RESULTS: A total of 63% (n = 218) had infrequent or no wheeze, 23% (n = 80) had transient and 9.6% (n = 21) had a persistent wheeze. Due to the low prevalence, results for intermediate (3.8%, n = 13) and late-onset wheeze (3.5%, n = 12) were not further evaluated. Most consistent associations were observed with the persistent wheeze phenotype with an adjusted odds ratio (95% confidence intervals) 2.04 (0.67-6.18) for minor moisture damage with or without mold spots (present in 23.8% of homes) and 3.68 (1.04-13.05) for major damage or any moisture damage with visible mold in a child's main living areas (present in 13.4% of homes). Early-age moisture damage or mold in the kitchen was associated with transient wheezing. CONCLUSION: At an early age, residential exposure to moisture damage or mold, can be dose-dependently associated especially with persistent wheezing phenotype later in childhood.


Asunto(s)
Cohorte de Nacimiento , Ruidos Respiratorios , Humanos , Finlandia/epidemiología , Fenotipo , Hongos , Factores de Riesgo
2.
Pediatr Allergy Immunol ; 32(6): 1226-1237, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33894090

RESUMEN

BACKGROUND: Exposure to indoor moisture damage and visible mold has been found to be associated with asthma and respiratory symptoms in several questionnaire-based studies by self-report. We aimed to define the prospective association between the early life exposure to residential moisture damage or mold and fractional exhaled nitric oxide (FeNO) and lung function parameters as objective markers for airway inflammation and asthma in 6-year-old children. METHODS: Home inspections were performed in children's homes when infants were on average 5 months old. At age 6 years, data on FeNO (n = 322) as well as lung function (n = 216) measurements were collected. Logistic regression and generalized additive models were used for statistical analyses. RESULTS: Early age major moisture damage and moisture damage or mold in the child's main living areas were significantly associated with increased FeNO levels (>75th percentile) at the age of 6 years (adjusted odds ratios, 95% confidence intervals, aOR (95% CI): 3.10 (1.35-7.07) and 3.16 (1.43-6.98), respectively. Effects were more pronounced in those who did not change residential address throughout the study period. For lung function, major structural damage within the whole home was associated with reduced FEV1 and FVC, but not with FEV1/FVC. No association with lung function was observed with early moisture damage or mold in the child's main living areas. CONCLUSION: These results underline the importance of prevention and remediation efforts of moisture and mold-damaged buildings in order to avoid harmful effects within the vulnerable phase of the infants and children's immunologic development.


Asunto(s)
Asma , Óxido Nítrico , Niño , Espiración , Hongos , Humanos , Lactante , Inflamación
3.
Environ Res ; 196: 110835, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582132

RESUMEN

BACKGROUND: Microbial exposures in early childhood direct the development of the immune system and their diversity may influence the risk of allergy development. We aimed to determine whether the indoor microbial diversity at early-life is associated with the development of allergic rhinitis and inhalant atopy. METHODS: The study population included children within two birth cohorts: Finnish rural-suburban LUKAS (N = 312), and German urban LISA from Munich and Leipzig study centers (N = 248). The indoor microbiota diversity (Chao1 richness and Shannon entropy) was characterized from floor dust samples collected at the child age of 2-3 months by Illumina MiSeq sequencing of bacterial and fungal DNA amplicons. Allergic rhinitis and inhalant atopy were determined at the age of 10 years and analyzed using logistic regression models. RESULTS: High bacterial richness (aOR 0.19, 95%CI 0.09-0.42 for middle and aOR 0.12, 95%CI 0.05-0.29 for highest vs. lowest tertile) and Shannon entropy were associated with lower risk of allergic rhinitis in LISA, and similar trend was seen in LUKAS. We observed some significant associations between bacterial and fungal diversity measured and the risk of inhalant atopy, but the associations were inconsistent between the two cohorts. High bacterial diversity tended to be associated with increased risk of inhalant atopy in rural areas, but lower risk in more urban areas. Fungal diversity tended to be associated with increased risk of inhalant atopy only in LISA. CONCLUSIONS: Our study suggests that a higher bacterial diversity may reduce the risk of allergic rhinitis later in childhood. The environment-dependent heterogeneity in the associations with inhalant atopy - visible here as inconsistent results between two differing cohorts - suggests that specific constituents of the diversity may be relevant.


Asunto(s)
Hipersensibilidad Inmediata , Microbiota , Rinitis Alérgica , Alérgenos , Niño , Preescolar , Polvo/análisis , Hongos , Humanos , Lactante , Rinitis Alérgica/epidemiología
4.
Indoor Air ; 31(6): 1952-1966, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34151461

RESUMEN

Moisture-damaged buildings are associated with respiratory symptoms and underlying diseases among building occupants, but the causative agent(s) remain a mystery. We first identified specific fungal and bacterial taxa in classrooms with moisture damage in Finnish and Dutch primary schools. We then investigated associations of the identified moisture damage indicators with respiratory symptoms in more than 2700 students. Finally, we explored whether exposure to specific taxa within the indoor microbiota may explain the association between moisture damage and respiratory health. Schools were assessed for moisture damage through detailed inspections, and the microbial composition of settled dust in electrostatic dustfall collectors was determined using marker-gene analysis. In Finland, there were several positive associations between particular microbial indicators (diversity, richness, individual taxa) and a respiratory symptom score, while in the Netherlands, the associations tended to be mostly inverse and statistically non-significant. In Finland, abundance of the Sphingomonas bacterial genus and endotoxin levels partially explained the associations between moisture damage and symptom score. A few microbial taxa explained part of the associations with health, but overall, the observed associations between damage-associated individual taxa and respiratory health were limited.


Asunto(s)
Contaminación del Aire Interior , Polvo , Exposición a Riesgos Ambientales/estadística & datos numéricos , Hongos , Humanos , Instituciones Académicas , Estudiantes
5.
Indoor Air ; 30(3): 433-444, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31883508

RESUMEN

In vitro models mimicking the human respiratory system are essential when investigating the toxicological effects of inhaled indoor air particulate matter (PM). We present a pulmonary cell culture model for studying indoor air PM toxicity. We exposed normal human bronchial epithelial cells, grown on semi-permeable cell culture membranes, to four doses of indoor air PM in the air-liquid interface. We analyzed the chemokine interleukin-8 concentration from the cell culture medium, protein concentration from the apical wash, measured tissue electrical resistance, and imaged airway constructs using light and transmission electron microscopy. We sequenced RNA using a targeted RNA toxicology panel for 386 genes associated with toxicological responses. PM was collected from a non-complaint residential environment over 1 week. Sample collection was concomitant with monitoring size-segregated PM counts and determination of microbial levels and diversity. PM exposure was not acutely toxic for the cells, and we observed up-regulation of 34 genes and down-regulation of 17 genes when compared to blank sampler control exposure. The five most up-regulated genes were related to immunotoxicity. Despite indications of incomplete cell differentiation, this model enabled the comparison of a toxicological transcriptome associated with indoor air PM exposure.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Contaminación del Aire Interior , Modelos Biológicos , Material Particulado/toxicidad , Humanos , Transcriptoma
6.
J Allergy Clin Immunol ; 144(5): 1402-1410, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31415782

RESUMEN

BACKGROUND: Early-life indoor bacterial exposure is associated with the risk of asthma, but the roles of specific bacterial genera are poorly understood. OBJECTIVE: We sought to determine whether individual bacterial genera in indoor microbiota predict the development of asthma. METHODS: Dust samples from living rooms were collected at 2 months of age. The dust microbiota was characterized by using Illumina MiSeq sequencing amplicons of the bacterial 16S ribosomal RNA gene. Children (n = 373) were followed up for ever asthma until the age of 10.5 years. RESULTS: Richness was inversely associated with asthma after adjustments (P = .03). The phylogenetic microbiota composition in asthmatics patients' homes was characteristically different from that in nonasthmatic subjects' homes (P = .02, weighted UniFrac, adjusted association, permutational multivariate analysis of variance, PERMANOVA-S). The first 2 axis scores of principal coordinate analysis of the weighted UniFrac distance matrix were inversely associated with asthma. Of 658 genera detected in the dust samples, the relative abundances of 41 genera correlated (r > |0.4|) with one of these axes. Lactococcus genus was a risk factor for asthma (adjusted odds ratio, 1.36 [95% CI, 1.13-1.63] per interquartile range change). The abundance of 12 bacterial genera (mostly from the Actinomycetales order) was associated with lower asthma risk (P < .10), although not independently of each other. The sum relative abundance of these 12 intercorrelated genera was significantly protective and explained the majority of the association of richness with less asthma. CONCLUSION: Our data confirm that phylogenetic differences in the microbiota of infants' homes are associated with subsequent asthma risk and suggest that communities of selected bacteria are more strongly linked to asthma protection than individual bacterial taxa or mere richness.


Asunto(s)
Actinomycetales/genética , Asma/microbiología , Lactococcus/genética , Microbiota/genética , ARN Ribosómico 16S/genética , Contaminación del Aire Interior/efectos adversos , Asma/epidemiología , Niño , Preescolar , Polvo/análisis , Femenino , Finlandia/epidemiología , Estudios de Seguimiento , Humanos , Masculino , Riesgo
7.
Indoor Air ; 29(2): 299-307, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30575131

RESUMEN

Exposure to moisture-damaged indoor environments is associated with adverse respiratory health effects, but responsible factors remain unidentified. In order to explore possible mechanisms behind these effects, the oxidative capacity and hemolytic activity of settled dust samples (n = 25) collected from moisture-damaged and non-damaged schools in Spain, the Netherlands, and Finland were evaluated and matched against the microbial content of the sample. Oxidative capacity was determined with plasmid scission assay and hemolytic activity by assessing the damage to isolated human red blood cells. The microbial content of the samples was measured with quantitative PCR assays for selected microbial groups and by analyzing the cell wall markers ergosterol, muramic acid, endotoxins, and glucans. The moisture observations in the schools were associated with some of the microbial components in the dust, and microbial determinants grouped together increased the oxidative capacity. Oxidative capacity was also affected by particle concentration and country of origin. Two out of 14 studied dust samples from moisture-damaged schools demonstrated some hemolytic activity. The results indicate that the microbial component connected with moisture damage is associated with increased oxidative stress and that hemolysis should be studied further as one possible mechanism contributing to the adverse health effects of moisture-damaged buildings.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior/efectos adversos , Hemólisis , Humedad/efectos adversos , Estrés Oxidativo , Contaminación del Aire Interior/análisis , Estudios Transversales , Polvo/análisis , Endotoxinas/análisis , Monitoreo del Ambiente , Finlandia , Hongos/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Humanos , Países Bajos , Reacción en Cadena de la Polimerasa , Instituciones Académicas , España
8.
Eur Respir J ; 51(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29437937

RESUMEN

Both protective and adverse effects of indoor microbial exposure on asthma have been reported, but mostly in children. To date, no study in adults has used non-targeted methods for detection of indoor bacteria followed by quantitative confirmation.A cross-sectional study of 198 asthmatic and 199 controls was conducted within the European Community Respiratory Health Survey (ECRHS) II. DNA was extracted from mattress dust for bacterial analysis using denaturing gradient gel electrophoresis (DGGE). Selected bands were sequenced and associations with asthma confirmed with four quantitative PCR (qPCR) assays.15 out of 37 bands detected with DGGE, which had at least a suggestive association (p<0.25) with asthma, were sequenced. Of the four targeted qPCRs, Clostridium cluster XI confirmed the protective association with asthma. The association was dose dependent (aOR 0.43 (95% CI 0.22-0.84) for the fourth versus first quartile, p for trend 0.009) and independent of other microbial markers. Few significant associations were observed for the three other qPCRs used.In this large international study, the level of Clostridium cluster XI was independently associated with a lower risk of prevalent asthma. Results suggest the importance of environmental bacteria also in adult asthma, but need to be confirmed in future studies.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Asma/microbiología , Clostridioides difficile/genética , Polvo/análisis , Adulto , Asma/etiología , Estudios de Casos y Controles , Estudios Transversales , ADN Bacteriano/análisis , Unión Europea , Femenino , Encuestas Epidemiológicas , Humanos , Inmunoglobulina E/sangre , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante
9.
Environ Sci Technol ; 52(1): 237-247, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29144737

RESUMEN

Human-induced resuspension of floor dust is a dynamic process that can serve as a major indoor source of biological particulate matter (bioPM). Inhalation exposure to the microbial and allergenic content of indoor dust is associated with adverse and protective health effects. This study evaluates infant and adult inhalation exposures and respiratory tract deposited dose rates of resuspended bioPM from carpets. Chamber experiments were conducted with a robotic crawling infant and an adult performing a walking sequence. Breathing zone (BZ) size distributions of resuspended fluorescent biological aerosol particles (FBAPs), a bioPM proxy, were monitored in real-time. FBAP exposures were highly transient during periods of locomotion. Both crawling and walking delivered a significant number of resuspended FBAPs to the BZ, with concentrations ranging from 0.5 to 2 cm-3 (mass range: ∼50 to 600 µg/m3). Infants and adults are primarily exposed to a unimodal FBAP size distribution between 2 and 6 µm, with infants receiving greater exposures to super-10 µm FBAPs. In just 1 min of crawling or walking, 103-104 resuspended FBAPs can deposit in the respiratory tract, with an infant receiving much of their respiratory tract deposited dose in their lower airways. Per kg body mass, an infant will receive a nearly four times greater respiratory tract deposited dose of resuspended FBAPs compared to an adult.


Asunto(s)
Contaminación del Aire Interior , Exposición por Inhalación , Polvo , Humanos , Lactante , Tamaño de la Partícula , Material Particulado
10.
Indoor Air ; 28(1): 6-15, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28779500

RESUMEN

Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case-control study involving 150 children with new-onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new-onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new-onset wheezing in a dose-dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new-onset wheezing. The association between mold and new-onset wheeze was not modified by atopic status, suggesting a non-allergic association.


Asunto(s)
Microbiología del Aire , Hongos , Ruidos Respiratorios/etiología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Vivienda , Humanos , Lactante , Masculino , Padres
11.
Nucleic Acids Res ; 44(12): 5732-42, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27112570

RESUMEN

During replication of nuclear ribosomal DNA (rDNA), clashes with the transcription apparatus can cause replication fork collapse and genomic instability. To avoid this problem, a replication fork barrier protein is situated downstream of rDNA, there preventing replication in the direction opposite rDNA transcription. A potential candidate for a similar function in mitochondria is the mitochondrial transcription termination factor 1 (MTERF1, also denoted mTERF), which binds to a sequence just downstream of the ribosomal transcription unit. Previous studies have shown that MTERF1 prevents antisense transcription over the ribosomal RNA genes, a process which we here show to be independent of the transcription elongation factor TEFM. Importantly, we now demonstrate that MTERF1 arrests mitochondrial DNA (mtDNA) replication with distinct polarity. The effect is explained by the ability of MTERF1 to act as a directional contrahelicase, blocking mtDNA unwinding by the mitochondrial helicase TWINKLE. This conclusion is also supported by in vivo evidence that MTERF1 stimulates TWINKLE pausing. We conclude that MTERF1 can direct polar replication fork arrest in mammalian mitochondria.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , ADN Helicasas/genética , Replicación del ADN , ADN Mitocondrial/genética , ADN Ribosómico/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN Helicasas/metabolismo , ADN Mitocondrial/metabolismo , ADN Ribosómico/metabolismo , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
12.
Am J Respir Crit Care Med ; 193(8): 889-97, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26575599

RESUMEN

RATIONALE: Growing up on a farm protects from childhood asthma and early wheeze. Virus-triggered wheeze in infancy predicts asthma in individuals with a genetic asthma risk associated with chromosome 17q21. OBJECTIVES: To test environmental determinants of infections and wheeze in the first year of life, potential modifications of these associations by 17q21, and the implications for different trajectories of wheeze. METHODS: We followed 983 children in rural areas of Europe from birth until age 6 years. Symptoms of wheeze, rhinitis, fever, and environmental exposures were documented with weekly diaries during year 1. Asthma at age 6 was defined as ever having a reported doctor's diagnosis. Single-nucleotide polymorphisms related to ORMDL3 (rs8076131) and GSDMB (rs7216389, rs2290400) at 17q21 were genotyped. MEASUREMENTS AND MAIN RESULTS: Early wheeze was positively associated with presence of older siblings among carriers of known asthma risk alleles at 17q21 (e.g., rs8076131) (adjusted odds ratio [aOR], 1.53; 95% confidence interval [CI], 1.16-2.01). Exposure to farm animal sheds was inversely related to wheeze (aOR, 0.44; 95% CI, 0.33-0.60). Both effects were similarly observed in children with transient wheeze up to age 3 years without subsequent development of asthma (aOR, 1.71 [95% CI, 1.09-2.67]; and aOR, 0.48 [95% CI, 0.30-0.76], respectively). CONCLUSIONS: These findings suggest that the chromosome 17q21 locus relates to episodes of acute airway obstruction common to both transient wheeze and asthma. The previously identified asthma risk alleles are the ones susceptible to environmental influences. Thus, this gene-environment interaction reveals two faces of 17q21: The same genotype constitutes genetic risk and allows for environmental protection, thereby providing options for prospective prevention strategies.


Asunto(s)
Asma/genética , Cromosomas Humanos Par 21/genética , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad/genética , Ruidos Respiratorios/genética , Alelos , Niño , Preescolar , Europa (Continente) , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Población Rural/estadística & datos numéricos
13.
Inhal Toxicol ; 29(2): 75-81, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28330428

RESUMEN

Moisture-damaged indoor environments are thought to increase the toxicity of indoor air particulate matter (PM), indicating that a toxicological assay could be used as a method for recognizing buildings with indoor air problems. We aimed to test if our approach of analyzing the toxicity of actively collected indoor air PM in vitro differentiates moisture-damaged from non-damaged school buildings. We collected active air samples with NIOSH Bioaerosol Cyclone Samplers from moisture-damaged (index) and non-damaged (reference) school buildings (4 + 4). The teachers and pupils of the schools were administered a symptom questionnaire. Five samples of two size fractions [Stage 1 (>1.9 µm) and Stage 2 (1-1.9 µm)] were collected from each school. Mouse RAW264.7 macrophages were exposed to the collected PM for 24 h and subsequently analyzed for changes in cell metabolic activity, production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-6. The teachers working in the moisture-damaged schools reported respiratory symptoms such as cough (p = 0.01) and shortness of breath (p = 0.01) more often than teachers from reference schools. Toxicity of the PM sample as such did not differentiate index from reference building,s but the toxicity adjusted for the amount of the particles tended to be higher in moisture-damaged schools. Further development of the method will require identification of other confounding factors in addition to the necessity to adjust for differences in particle counts between samples.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Polvo , Humedad , Material Particulado/efectos adversos , Instituciones Académicas , Contaminación del Aire Interior/análisis , Animales , Monitoreo del Ambiente , Femenino , Estado de Salud , Humanos , Interleucina-6/metabolismo , Masculino , Ratones , Óxido Nítrico/metabolismo , Material Particulado/análisis , Células RAW 264.7 , Maestros , Estudiantes , Factor de Necrosis Tumoral alfa/metabolismo
14.
Microbiology (Reading) ; 162(11): 1895-1903, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27655355

RESUMEN

Fungal growth on indoor surfaces can decay building materials and release hazardous substances that affect indoor air quality. Despite the numerous methods available for growth determination, there is no commonly accepted standard. The goal of this study was to compare five different assay methods for the measurement of fungal growth: cultivation, MS-based determination of ergosterol, beta-N-acetylhexosaminidase activity, quantitative PCR and microscopic spore counting. Three fungal species (Aspergillus puulaauensis, Cladosporium montecillanum and Penicillium polonicum) were grown on three different building materials (two types of acoustic board and wood). Fungal load was determined at different time points. Results from all of the methods, except the spore count, showed good correlation between each other (r=0.6-0.8). Results obtained with the cultivation method had the highest variability among replicate samples (65 %), making it the least reproducible in repeated measurements. However, it also displayed the highest variability in incubation times (149 %), indicating its suitability for detecting transient changes in the physiological state of cells. Similar to the cultivation method, quantitative PCR correlated well with the other methods and had high variability in incubation times but had lower variability among replicate samples. Ergosterol and beta-N-acetylhexosaminidase enzyme activity seemed to be the methods least dependent on the physiological state of the cells. Varying growth dynamics were observed for different species over time with the different assay methods. Each one of the tests provides a different perspective on fungal quantification due to its specific responses to the various stages of fungal growth.


Asunto(s)
Materiales de Construcción/microbiología , Hongos/crecimiento & desarrollo , Micología/métodos , Supervivencia Celular , Recuento de Colonia Microbiana , Materiales de Construcción/análisis , Hongos/genética , Micología/instrumentación , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
15.
Appl Environ Microbiol ; 82(2): 578-84, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546428

RESUMEN

The environmental relative moldiness index (ERMI) metric was previously developed to quantify mold contamination in U.S. homes. This study determined the applicability of the ERMI for quantifying mold and moisture damage in Finnish residences. Homes of the LUKAS2 birth cohort in Finland were visually inspected for moisture damage and mold, and vacuumed floor dust samples were collected. An ERMI analysis including 36 mold-specific quantitative PCR assays was performed on the dust samples (n = 144), and the ERMI metric was analyzed against inspection-based observations of moisture damage and mold. Our results show that the ERMI was significantly associated with certain observations of visible mold in Finnish homes but not with moisture damage. Several mold species occurred more frequently and at higher levels in Finnish than in U.S. homes. Modification of the ERMI toward Finnish conditions, using a subsample of LUKAS2 homes with and without moisture damage, resulted in a simplified metric based on 10 mold species. The Finnish ERMI (FERMI) performed substantially better in quantifying moisture and mold damage in Finnish homes, showing significant associations with various observations of visible mold, strongest when the damage was located in the child's main living area, as well as with mold odor and moisture damage. As shown in Finland, the ERMI as such is not equally well usable in different climates and geographic regions but may be remodeled to account for local outdoor and indoor fungal conditions as well as for moisture damage characteristics in a given country.


Asunto(s)
Monitoreo del Ambiente , Hongos/crecimiento & desarrollo , Hongos/aislamiento & purificación , Vivienda/normas , Estudios de Cohortes , Polvo/análisis , Finlandia , Hongos/genética , Odorantes/análisis
16.
Inhal Toxicol ; 28(11): 500-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27569522

RESUMEN

There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Contaminación del Aire Interior/efectos adversos , Animales , Monitoreo del Ambiente/instrumentación , Ratones , Óxido Nítrico/metabolismo , Material Particulado/toxicidad , Células RAW 264.7 , Instituciones Académicas , Pruebas de Toxicidad/métodos , Factor de Necrosis Tumoral alfa/metabolismo
17.
J Allergy Clin Immunol ; 135(1): 56-62, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25441645

RESUMEN

BACKGROUND: Breast-feeding is protective against respiratory infections in early life. Given the co-evolutionary adaptations of humans and cattle, bovine milk might exert similar anti-infective effects in human infants. OBJECTIVE: To study effects of consumption of raw and processed cow's milk on common infections in infants. METHODS: The PASTURE birth cohort followed 983 infants from rural areas in Austria, Finland, France, Germany, and Switzerland, for the first year of life, covering 37,306 person-weeks. Consumption of different types of cow's milk and occurrence of rhinitis, respiratory tract infections, otitis, and fever were assessed by weekly health diaries. C-reactive protein levels were assessed using blood samples taken at 12 months. RESULTS: When contrasted with ultra-heat treated milk, raw milk consumption was inversely associated with occurrence of rhinitis (adjusted odds ratio from longitudinal models [95% CI]: 0.71 [0.54-0.94]), respiratory tract infections (0.77 [0.59-0.99]), otitis (0.14 [0.05-0.42]), and fever (0.69 [0.47-1.01]). Boiled farm milk showed similar but weaker associations. Industrially processed pasteurized milk was inversely associated with fever. Raw farm milk consumption was inversely associated with C-reactive protein levels at 12 months (geometric means ratio [95% CI]: 0.66 [0.45-0.98]). CONCLUSIONS: Early life consumption of raw cow's milk reduced the risk of manifest respiratory infections and fever by about 30%. If the health hazards of raw milk could be overcome, the public health impact of minimally processed but pathogen-free milk might be enormous, given the high prevalence of respiratory infections in the first year of life and the associated direct and indirect costs.


Asunto(s)
Fiebre/prevención & control , Leche , Infecciones del Sistema Respiratorio/prevención & control , Animales , Ingestión de Líquidos , Europa (Continente)/epidemiología , Femenino , Fiebre/epidemiología , Calor , Humanos , Lactante , Masculino , Oportunidad Relativa , Otitis/epidemiología , Pasteurización , Estudios Prospectivos , Infecciones del Sistema Respiratorio/epidemiología , Rinitis/epidemiología
18.
Eur Respir J ; 45(2): 328-37, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25186271

RESUMEN

Inverse associations have been found between exposure to bio-contaminants and asthma and allergies. The aim of this study was to prospectively assess whether early exposure to bio-contaminants in dust is associated with asthma and allergy later in childhood among children from (sub)-urban areas. In subsets of three European birth cohorts (PIAMA: n=553; INMA: n=481; and LISAplus: n=395), endotoxin, (1,3,)-ß-d-glucan and extracellular polysaccharide were measured in dust from living rooms shortly after birth. Current asthma at 6 years and 10 years of age and ever asthma up to 10 years of age were assessed by parental questionnaires. Specific IgE levels at 8 years (PIAMA) and 10 years (LISAplus) were available. Adjusted, cohort-specific logistic regression analyses were performed. Higher endotoxin concentrations were positively associated with current asthma at 6 years of age in PIAMA (adjusted OR 1.96, 95% CI 1.07-3.58), but were inversely related with ever asthma up to 10 years of age in INMA (adjusted OR 0.39, 95% CI 0.16-0.94). No associations with asthma were found for LISAplus. No associations were observed with atopic sensitisation in all cohorts. All associations with (1,3)-ß-d-glucan and extracellular polysaccharide were statistically nonsignificant. The suggested immunological mechanisms of early exposure to bio-contaminants with regards to asthma and allergy might be different for children growing up in (sub)-urban environments.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Asma/etiología , Alérgenos/inmunología , Niño , Polvo/análisis , Endotoxinas/química , Exposición a Riesgos Ambientales , Europa (Continente) , Femenino , Geografía , Humanos , Hipersensibilidad/etiología , Hipersensibilidad Inmediata/inmunología , Inmunoglobulina E/química , Recién Nacido , Modelos Logísticos , Masculino , Polisacáridos/química , Estudios Prospectivos , Proteoglicanos , Encuestas y Cuestionarios , Población Urbana , beta-Glucanos/química
19.
Occup Environ Med ; 72(8): 602-4, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25838260

RESUMEN

OBJECTIVE: To report the effects of bleach use at home on the frequency of infections in 9102 school-age children participating in the HITEA project. METHODS: Parents of pupils aged 6-12 years from schools in Barcelona province (Spain), Utrecht province (the Netherlands) and Eastern and Central Finland were administered a questionnaire including questions on the frequency of infections (influenza, tonsillitis, sinusitis, otitis, bronchitis and pneumonia) in the past 12 months and bleach use at home. We developed multivariable mixed-effects multilogistic regression models to obtain relative risk ratios (RRR) and their 95% CI per country, and combined the RRR using random-effects meta-analyses. RESULTS: Bleach use was common in Spain (72%, n=1945) and uncommon in Finland (7%, n=279). Overall, the prevalence of infections (recurrent or once) was higher among children of bleach users. Significant combined associations were shown for influenza only once (RRR=1.20, 95% CI 1.04 to 1.38), recurrent tonsillitis (RRR=1.35, 95% CI 1.07 to 1.71) and any infection (RRR=1.18, 95% CI 1.01 to 1.38). CONCLUSIONS: Passive exposure to cleaning bleach in the home may have adverse effects on school-age children's health by increasing the risk of respiratory and other infections. The high frequency of use of disinfecting irritant cleaning products may be of public health concern, also when exposure occurs during childhood.


Asunto(s)
Desinfectantes/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Infecciones/etiología , Gripe Humana/etiología , Irritantes/efectos adversos , Tonsilitis/etiología , Bronquitis/etiología , Niño , Estudios Transversales , Femenino , Finlandia , Humanos , Modelos Logísticos , Masculino , Países Bajos , Oportunidad Relativa , Otitis/etiología , Neumonía/etiología , Prevalencia , Sinusitis/etiología , España , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA