RESUMEN
BACKGROUND: Intense physical exercise in athletes increases the risk to develop exercise-induced bronchocontriction (EIB). We aimed to study EIB prevalence and explore methods for effective EIB screening. METHODS: Three hundred twenty-seven adolescent athletes (12-18 years) performing at least 12 h of sports a week were included. The evaluation consisted of spirometry, eucapnic voluntary hyperpnoea test (EVH) to evaluate for EIB, FeNO, skin prick testing, blood sampling (serum markers of epithelial damage and mast cell activation), and questionnaires (AQUA©, ACT, ACQ, and exposure and symptom-related questions). RESULTS: Of all athletes, 22% tested positive for EIB (n = 72), 14% reported a previous asthma diagnosis and 40% were atopic. Eighty percent of EIB+ athletes did not use any inhalation therapy. EIB+ athletes were significantly younger, had decreased FEV1/FVC (%), and increased post-EVH-reversibility (%) post-salbutamol compared with EIB- athletes. Furthermore, EIB was significantly associated with previous asthma diagnosis and atopy. The best predictors for a positive EVH test were AQUA© score ≥ 6 (sensitivity of 78%, p = .0171) and wheezing during exercise (specificity of 82%, p = .0002). FeNO negatively and significantly correlated with maximal fall in FEV1 post-EVH test in atopic athletes (r = -.2735, p = .0056). Maximal fall in FEV1 was also associated with prior PM10 exposure (p = .036). Serum markers of epithelial damage were significantly associated with training type, training intensity, EIB severity, and prior air pollution exposure. CONCLUSION: Our findings support the effectiveness of a systematic respiratory screening approach, including baseline questionnaires, lung function tests, and FeNO measurement, to improve EIB detection in adolescent athletes in whom respiratory response to EVH testing is associated with prior exposure to air pollution.
Asunto(s)
Asma Inducida por Ejercicio , Atletas , Humanos , Adolescente , Masculino , Femenino , Asma Inducida por Ejercicio/diagnóstico , Asma Inducida por Ejercicio/epidemiología , Niño , Encuestas y Cuestionarios , Prevalencia , Broncoconstricción , Pruebas Cutáneas/métodos , Tamizaje Masivo/métodos , Espirometría/métodos , Ejercicio Físico/fisiologíaRESUMEN
BACKGROUND: Polyethylene glycol (PEG) and polysorbate 80 (PS80) allergy preclude from SARS-CoV-2 vaccination. The mechanism(s) governing cross-reactivity and PEG molecular weight dependence remain unclear. OBJECTIVES: To evaluate PEGylated lipid nanoparticle (LNP) vaccine (BNT162b2) tolerance and explore the mechanism of reactivity in PEG and/or PS80 allergic patients. METHODS: PEG/PS80 dual- (n = 3), PEG mono- (n = 7), and PS80 mono-allergic patients (n = 2) were included. Tolerability of graded vaccine challenges was assessed. Basophil activation testing on whole blood (wb-BAT) or passively sensitized donor basophils (allo-BAT) was performed using PEG, PS80, BNT162b2, and PEGylated lipids (ALC-0159). Serum PEG-specific IgE was measured in patients (n = 10) and controls (n = 15). RESULTS: Graded BNT162b2 challenge in dual- and PEG mono-allergic patients (n = 3/group) was well tolerated and induced anti-spike IgG seroconversion. PS80 mono-allergic patients (n = 2/2) tolerated single-dose BNT162b2 vaccination. Wb-BAT reactivity to PEG-containing antigens was observed in dual- (n = 3/3) and PEG mono- (n = 2/3), but absent in PS80 mono-allergic patients (n = 0/2). BNT162b2 elicited the highest in vitro reactivity. BNT162b2 reactivity was IgE mediated, complement independent, and inhibited in allo-BAT by preincubation with short PEG motifs, or detergent-induced LNP degradation. PEG-specific IgE was only detectable in dual-allergic (n = 3/3) and PEG mono-allergic (n = 1/6) serum. CONCLUSION: PEG and PS80 cross-reactivity is determined by IgE recognizing short PEG motifs, whereas PS80 mono-allergy is PEG-independent. PS80 skin test positivity in PEG allergics was associated with a severe and persistent phenotype, higher serum PEG-specific IgE levels, and enhanced BAT reactivity. Spherical PEG exposure via LNP enhances BAT sensitivity through increased avidity. All PEG and/or PS80 excipient allergic patients can safely receive SARS-CoV-2 vaccines.
Asunto(s)
COVID-19 , Hipersensibilidad , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Inmunoglobulina E , Polietilenglicoles , Polisorbatos , SARS-CoV-2RESUMEN
The reported incidence of immediate hypersensitivity reactions (IHR) including anaphylaxis after COVID-19 vaccination is 10-fold higher than for other vaccines. Several patient groups are theorized to be at particular risk. Since specific vaccination guidelines for these patients are based on expert opinion, we performed a retrospective monocentric analysis of the tolerability of adenoviral vector and mRNA-based COVID-19 vaccines in a cohort of patients allegedly at high risk of IHR. Reactions were assessed immediately on-site by allergists during a monitored vaccination protocol and after 3-7 days through telephone interviews. The cohort included 196 patients (aged 12-84 years) with primary mast cell disease (pMCD, 50.5%), idiopathic anaphylaxis (IA, 19.9%), hereditary angioedema (HAE, 5.1%) or miscellaneous indications (24.5%). Twenty-five immediate reactions were observed in 221 vaccine doses (11.3%). Most occurred in IA or miscellaneous patients. None fulfilled anaphylaxis criteria and most were mild and self-limiting. Reaction occurrence was significantly associated with female sex. In total, 13.5% of pMCD patients reported mast cell activation-like symptoms within 72 h post-vaccination. All pediatric pMCD patients (n = 9, 12-18 years) tolerated both mRNA-based vaccine doses. In summary, adenoviral vector and mRNA-based COVID-19 vaccines were safe and well-tolerated in patients with pMCD, HAE, and IA. No anaphylaxis was observed. The mild and subjective nature of most reactions suggests a nocebo effect associated with vaccination in a medicalized setting. Patients with pMCD could experience mild flare-ups of mast cell activation-like symptoms, supporting antihistamine premedication.
RESUMEN
Background: Occupational allergy has been described in employees working in contact with mealworms in pet stores, live fish bait or infested stored grains and recently, in mealworm farming for animal feed and human consumption. Mealworm allergens linked to occupational allergy are troponin C, cockroach-like allergen, tropomyosin, arginine kinase, early-staged encapsulation inducing- and larval cuticle proteins. Objective: We report a case of occupational mealworm allergy and studied the culprit component. Methods: Diagnosis was done by skin prick, specific IgE, basophil activation and lung function testing. Allergen purification was performed by anion-exchange chromatography and immunoblotting with patient IgE. Allergens were identified by in-gel trypsin digest and tandem mass spectrometry. Allergenicity and specificity further confirmed by IgE inhibition and passive basophil activation experiments. Results: We describe a new case of occupational mealworm allergy in a laboratory worker, with sensitization to different developmental stages and derivates of the mealworm. In basophil activation tests, the majority of patient's basophils (69%-91%) degranulated upon stimulation with the lowest concentration of mealworm extracts (0.16â µg/ml). Despite strong sensitization to mites, the patient did not show cross-reactivity to other insects. We were able to identify alpha-amylase as the main allergen and through inhibition experiments, we demonstrated that low amounts (0.1â µg/ml) of this allergen could strongly inhibit mealworm specific IgE by 79.1%. Moreover, passive BAT experiments demonstrated the IgE-alpha-amylase interaction to be functional, inducing up to 25.5% degranulation in healthy donor basophils. Conclusion: Alpha-amylase can be identified as the responsible allergen in this specific case of occupational mealworm allergy.