Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 177(7): 1903-1914.e14, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31031007

RESUMEN

Xenograft cell transplantation into immunodeficient mice has become the gold standard for assessing pre-clinical efficacy of cancer drugs, yet direct visualization of single-cell phenotypes is difficult. Here, we report an optically-clear prkdc-/-, il2rga-/- zebrafish that lacks adaptive and natural killer immune cells, can engraft a wide array of human cancers at 37°C, and permits the dynamic visualization of single engrafted cells. For example, photoconversion cell-lineage tracing identified migratory and proliferative cell states in human rhabdomyosarcoma, a pediatric cancer of muscle. Additional experiments identified the preclinical efficacy of combination olaparib PARP inhibitor and temozolomide DNA-damaging agent as an effective therapy for rhabdomyosarcoma and visualized therapeutic responses using a four-color FUCCI cell-cycle fluorescent reporter. These experiments identified that combination treatment arrested rhabdomyosarcoma cells in the G2 cell cycle prior to induction of apoptosis. Finally, patient-derived xenografts could be engrafted into our model, opening new avenues for developing personalized therapeutic approaches in the future.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de los Músculos , Rabdomiosarcoma , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Femenino , Xenoinjertos , Humanos , Células K562 , Masculino , Neoplasias de los Músculos/tratamiento farmacológico , Neoplasias de los Músculos/inmunología , Neoplasias de los Músculos/metabolismo , Neoplasias de los Músculos/patología , Trasplante de Neoplasias , Ftalazinas/farmacología , Piperazinas/farmacología , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/inmunología , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra/genética , Pez Cebra/inmunología
2.
Neural Comput ; 31(2): 388-416, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30576619

RESUMEN

Connectomes abound, but few for the human spinal cord. Using anatomical data in the literature, we constructed a draft connectivity map of the human spinal cord connectome, providing a template for the many calibrations of specialized behavior to be overlaid on it and the basis for an initial computational model. A thorough literature review gleaned cell types, connectivity, and connection strength indications. Where human data were not available, we selected species that have been studied. Cadaveric spinal cord measurements, cross-sectional histology images, and cytoarchitectural data regarding cell size and density served as the starting point for estimating numbers of neurons. Simulations were run using neural circuitry simulation software. The model contains the neural circuitry in all ten Rexed laminae with intralaminar, interlaminar, and intersegmental connections, as well as ascending and descending brain connections and estimated neuron counts for various cell types in every lamina of all 31 segments. We noted the presence of highly interconnected complex networks exhibiting several orders of recurrence. The model was used to perform a detailed study of spinal cord stimulation for analgesia. This model is a starting point for workers to develop and test hypotheses across an array of biomedical applications focused on the spinal cord. Each such model requires additional calibrations to constrain its output to verifiable predictions. Future work will include simulating additional segments and expanding the research uses of the model.


Asunto(s)
Conectoma , Modelos Neurológicos , Neuronas/fisiología , Médula Espinal/fisiología , Animales , Axones/fisiología , Humanos , Vías Nerviosas/fisiología
3.
Neurocrit Care ; 21(3): 476-82, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24723663

RESUMEN

BACKGROUND: To investigate the frequency, predictors, and clinical impact of electrographic seizures in patients with high clinical or radiologic grade non-traumatic subarachnoid hemorrhage (SAH), independent of referral bias. METHODS: We compared rates of electrographic seizures and associated clinical variables and outcomes in patients with high clinical or radiologic grade non-traumatic SAH. Rates of electrographic seizure detection before and after institution of a guideline which made continuous EEG monitoring routine in this population were compared. RESULTS: Electrographic seizures occurred in 17.6 % of patients monitored expressly because of clinically suspected subclinical seizures. In unselected patients, seizures still occurred in 9.6 % of all cases, and in 8.6 % of cases in which there was no a priori suspicion of seizures. The first seizure detected occurred 5.4 (IQR 2.9-7.3) days after onset of subarachnoid hemorrhage with three of eight patients (37.5 %) having the first recorded seizure more than 48 h following EEG initiation, and 2/8 (25 %) at more than 72 h following EEG initiation. High clinical grade was associated with poor outcome at time of hospital discharge; electrographic seizures were not associated with poor outcome. CONCLUSIONS: Electrographic seizures occur at a relatively high rate in patients with non-traumatic SAH even after accounting for referral bias. The prolonged time to the first detected seizure in this cohort may reflect dynamic clinical features unique to the SAH population.


Asunto(s)
Electroencefalografía , Monitoreo Fisiológico , Convulsiones/etiología , Hemorragia Subaracnoidea/complicaciones , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Derivación y Consulta , Estudios Retrospectivos , Convulsiones/diagnóstico
4.
Neuromodulation ; 17(7): 642-55; discussion 655, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24750347

RESUMEN

OBJECTIVE: Stimulation of axons within the dorsal columns of the human spinal cord has become a widely used therapy to treat refractory neuropathic pain. The mechanisms have yet to be fully elucidated and may even be contrary to standard "gate control theory." Our hypothesis is that a computational model provides a plausible description of the mechanism by which dorsal column stimulation (DCS) inhibits wide dynamic range (WDR) cell output in a neuropathic model but not in a nociceptive pain model. MATERIALS AND METHODS: We created a computational model of the human spinal cord involving approximately 360,000 individual neurons and dendritic processing of some 60 million synapses--the most elaborate dynamic computational model of the human spinal cord to date. Neuropathic and nociceptive "pain" signals were created by activating topographically isolated regions of excitatory interneurons and high-threshold nociceptive fiber inputs, driving analogous regions of WDR neurons. Dorsal column fiber activity was then added at clinically relevant levels (e.g., Aß firing rate between 0 and 110 Hz by using a 210-µsec pulse width, 50-150 Hz frequency, at 1-3 V amplitude). RESULTS: Analysis of the nociceptive pain, neuropathic pain, and modulated circuits shows that, in contradiction to gate control theory, 1) nociceptive and neuropathic pain signaling must be distinct, and 2) DCS neuromodulation predominantly affects the neuropathic signal only, inhibiting centrally sensitized pathological neuron groups and ultimately the WDR pain transmission cells. CONCLUSION: We offer a different set of necessary premises than gate control theory to explain neuropathic pain inhibition and the relative lack of nociceptive pain inhibition by using retrograde DCS. Hypotheses regarding not only the pain relief mechanisms of DCS were made but also regarding the circuitry of pain itself, both nociceptive and neuropathic. These hypotheses and further use of the model may lead to novel stimulation paradigms.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Neuralgia/terapia , Dolor Nociceptivo/terapia , Asta Dorsal de la Médula Espinal/fisiología , Estimulación de la Médula Espinal/métodos , Humanos , Dimensión del Dolor
5.
Biomed Opt Express ; 2(8): 2372-82, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21833374

RESUMEN

We demonstrate for the first time that optical coherence tomography (OCT) imaging can reliably distinguish between morphologic features of low risk pancreatic cysts (i.e., pseudocysts and serous cystadenomas) and high risk pancreatic cysts (i.e., mucinous cystic neoplasms and intraductal papillary mucinous neoplasms). In our study fresh pancreatectomy specimens (66) from patients with cystic lesions undergoing surgery were acquired and examined with OCT. A training set of 20 pathology-OCT correlated tissue specimens were used to develop criteria for differentiating between low and high risk cystic lesions. A separate (validation) set of 46 specimens were used to test the OCT criteria by three clinicians, blinded to histopathology findings. Histology was finally used as a 'gold' standard for testing OCT findings. OCT was able to reveal specific morphologic features of pancreatic cysts and thus to differentiate between low-risk and high-risk cysts with over 95% sensitivity and specificity. This pilot study suggests that OCT could be used by clinicians in the future to more reliably differentiate between benign and potentially malignant pancreatic cysts. However, in vivo use of OCT requires a probe that has to fit the bore of the pancreas biopsy needle. Therefore, we have developed such probes and planned to start an in vivo pilot study within the very near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA