Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(3): e1010684, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972315

RESUMEN

The function of the stem cell system is supported by a stereotypical shape of the niche structure. In Drosophila ovarian germarium, somatic cap cells form a dish-like niche structure that allows only two or three germ-line stem cells (GSCs) reside in the niche. Despite extensive studies on the mechanism of stem cell maintenance, the mechanisms of how the dish-like niche structure is shaped and how this structure contributes to the stem cell system have been elusive. Here, we show that a transmembrane protein Stranded at second (Sas) and its receptor Protein tyrosine phosphatase 10D (Ptp10D), effectors of axon guidance and cell competition via epidermal growth factor receptor (Egfr) inhibition, shape the dish-like niche structure by facilitating c-Jun N-terminal kinase (JNK)-mediated apoptosis. Loss of Sas or Ptp10D in gonadal apical cells, but not in GSCs or cap cells, during the pre-pupal stage results in abnormal shaping of the niche structure in the adult, which allows excessive, four to six GSCs reside in the niche. Mechanistically, loss of Sas-Ptp10D elevates Egfr signaling in the gonadal apical cells, thereby suppressing their naturally-occurring JNK-mediated apoptosis that is essential for the shaping of the dish-like niche structure by neighboring cap cells. Notably, the abnormal niche shape and resulting excessive GSCs lead to diminished egg production. Our data propose a concept that the stereotypical shaping of the niche structure optimizes the stem cell system, thereby maximizing the reproductive capacity.


Asunto(s)
Proteínas de Drosophila , Animales , Apoptosis/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Germinativas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Nicho de Células Madre/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo
2.
Cell Struct Funct ; 49(1): 11-20, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38199250

RESUMEN

The ribosome is a molecular machine essential for protein synthesis, which is composed of approximately 80 different ribosomal proteins (Rps). Studies in yeast and cell culture systems have revealed that the intracellular level of Rps is finely regulated by negative feedback mechanisms or ubiquitin-proteasome system, which prevents over- or under-abundance of Rps in the cell. However, in vivo evidence for the homeostatic regulation of intracellular Rp levels has been poor. Here, using Drosophila genetics, we show that intracellular Rp levels are regulated by proteasomal degradation of excess Rps that are not incorporated into the ribosome. By establishing an EGFP-fused Rp gene system that can monitor endogenously expressed Rp levels, we found that endogenously expressed EGFP-RpS20 or -RpL5 is eliminated from the cell when RpS20 or RpL5 is exogenously expressed. Notably, the level of endogenously expressed Hsp83, a housekeeping gene, was not affected by exogenous expression of Hsp83, suggesting that the strict negative regulation of excess protein is specific for intracellular Rps. Further analyses revealed that the maintenance of cellular Rp levels is not regulated at the transcriptional level but by proteasomal degradation of excess free Rps as a protein quality control mechanism. Our observations provide not only the in vivo evidence for the homeostatic regulation of Rp levels but also a novel genetic strategy to study in vivo regulation of intracellular Rp levels and its role in tissue homeostasis via cell competition.Key words: ribosomal protein, proteasomal degradation, Drosophila.


Asunto(s)
Drosophila , Proteínas Ribosómicas , Animales , Drosophila/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Biosíntesis de Proteínas , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Development ; 148(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34313318

RESUMEN

Heterozygosity of ribosomal protein genes causes a variety of developmental abnormalities in humans, which are collectively known as ribosomopathies, yet the underlying mechanisms remain elusive. Here, we analyzed Drosophila Minute (M)/+ mutants, a group of mutants heterozygous for ribosomal protein genes that exhibit a characteristic thin-bristle phenotype. We found that, although M/+ flies develop essentially normal wings, simultaneous deletion of one copy of the Hippo pathway effector yki resulted in severe wing growth defects. These defects were caused by JNK-mediated cell death in the wing pouch via Eiger/TNF signaling. The JNK activation in M/+, yki/+ wing discs required the caspase Dronc, which is normally blocked by DIAP1. Notably, heterozygosity of yki reduced DIAP1 expression in the wing pouch, leading to elevation of Dronc activity. Dronc and JNK formed a positive-feedback loop that amplifies Dronc activation, leading to apoptosis. Our observations suggest a mechanism of robust tissue growth whereby tissues with reduced ribosomal protein prevent ectopic apoptosis via Yki activity.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Animales , Apoptosis , Muerte Celular , Regulación hacia Abajo , Drosophila/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas Nucleares/genética , Transducción de Señal , Transactivadores/genética , Alas de Animales/anatomía & histología , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
4.
PLoS Genet ; 17(1): e1009300, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507966

RESUMEN

Highly reproducible tissue development is achieved by robust, time-dependent coordination of cell proliferation and cell death. To study the mechanisms underlying robust tissue growth, we analyzed the developmental process of wing imaginal discs in Drosophila Minute mutants, a series of heterozygous mutants for a ribosomal protein gene. Minute animals show significant developmental delay during the larval period but develop into essentially normal flies, suggesting there exists a mechanism ensuring robust tissue growth during abnormally prolonged developmental time. Surprisingly, we found that both cell death and compensatory cell proliferation were dramatically increased in developing wing pouches of Minute animals. Blocking the cell-turnover by inhibiting cell death resulted in morphological defects, indicating the essential role of cell-turnover in Minute wing morphogenesis. Our analyses showed that Minute wing discs elevate Wg expression and JNK-mediated Dilp8 expression that causes developmental delay, both of which are necessary for the induction of cell-turnover. Furthermore, forced increase in Wg expression together with developmental delay caused by ecdysone depletion induced cell-turnover in the wing pouches of non-Minute animals. Our findings suggest a novel paradigm for robust coordination of tissue growth by cell-turnover, which is induced when developmental time axis is distorted.


Asunto(s)
Proteínas de Drosophila/genética , Discos Imaginales/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas Ribosómicas/genética , Proteína Wnt1/genética , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ecdisona/genética , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Discos Imaginales/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Metamorfosis Biológica/genética , Organogénesis/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
5.
PLoS Genet ; 17(11): e1009893, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780467

RESUMEN

Identifying a common oncogenesis pathway among tumors with different oncogenic mutations is critical for developing anti-cancer strategies. Here, we performed transcriptome analyses on two different models of Drosophila malignant tumors caused by Ras activation with cell polarity defects (RasV12/scrib-/-) or by microRNA bantam overexpression with endocytic defects (bantam/rab5-/-), followed by an RNAi screen for genes commonly essential for tumor growth and malignancy. We identified that Juvenile hormone Inducible-21 (JhI-21), a Drosophila homolog of the L-amino acid transporter 1 (LAT1), is upregulated in these malignant tumors with different oncogenic mutations and knocking down of JhI-21 strongly blocked their growth and invasion. JhI-21 expression was induced by simultaneous activation of c-Jun N-terminal kinase (JNK) and Yorkie (Yki) in these tumors and thereby contributed to tumor growth and progression by activating the mTOR-S6 pathway. Pharmacological inhibition of LAT1 activity in Drosophila larvae significantly suppressed growth of RasV12/scrib-/- tumors. Intriguingly, LAT1 inhibitory drugs did not suppress growth of bantam/rab5-/- tumors and overexpression of bantam rendered RasV12/scrib-/- tumors unresponsive to LAT1 inhibitors. Further analyses with RNA sequencing of bantam-expressing clones followed by an RNAi screen suggested that bantam induces drug resistance against LAT1 inhibitors via downregulation of the TMEM135-like gene CG31157. Our observations unveil an evolutionarily conserved role of LAT1 induction in driving Drosophila tumor malignancy and provide a powerful genetic model for studying cancer progression and drug resistance.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Proteínas de Drosophila/genética , Resistencia a Antineoplásicos , MAP Quinasa Quinasa 4/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Sistemas de Transporte de Aminoácidos/antagonistas & inhibidores , Sistemas de Transporte de Aminoácidos/genética , Animales , Drosophila , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , MAP Quinasa Quinasa 4/genética , MicroARNs/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Interferencia de ARN , Transducción de Señal , Regulación hacia Arriba , Proteínas Señalizadoras YAP/genética
6.
PLoS Genet ; 17(12): e1009958, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871307

RESUMEN

Cell competition is a context-dependent cell elimination via cell-cell interaction whereby unfit cells ('losers') are eliminated from the tissue when confronted with fitter cells ('winners'). Despite extensive studies, the mechanism that drives loser's death and its physiological triggers remained elusive. Here, through a genetic screen in Drosophila, we find that endoplasmic reticulum (ER) stress causes cell competition. Mechanistically, ER stress upregulates the bZIP transcription factor Xrp1, which promotes phosphorylation of the eukaryotic translation initiation factor eIF2α via the kinase PERK, leading to cell elimination. Surprisingly, our genetic data show that different cell competition triggers such as ribosomal protein mutations or RNA helicase Hel25E mutations converge on upregulation of Xrp1, which leads to phosphorylation of eIF2α and thus causes reduction in global protein synthesis and apoptosis when confronted with wild-type cells. These findings not only uncover a core pathway of cell competition but also open the way to understanding the physiological triggers of cell competition.


Asunto(s)
Competencia Celular/genética , ARN Helicasas DEAD-box/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Factor 2 Eucariótico de Iniciación/genética , eIF-2 Quinasa/genética , Animales , Apoptosis/genética , Drosophila melanogaster/genética , Retículo Endoplásmico , Estrés del Retículo Endoplásmico/genética , Fosforilación , Transducción de Señal/genética , Activación Transcripcional/genética
7.
Nature ; 542(7640): 246-250, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28092921

RESUMEN

Normal epithelial cells often exert anti-tumour effects against nearby oncogenic cells. In the Drosophila imaginal epithelium, clones of oncogenic cells with loss-of-function mutations in the apico-basal polarity genes scribble or discs large are actively eliminated by cell competition when surrounded by wild-type cells. Although c-Jun N-terminal kinase (JNK) signalling plays a crucial role in this cell elimination, the initial event, which occurs at the interface between normal cells and polarity-deficient cells, has not previously been identified. Here, through a genetic screen in Drosophila, we identify the ligand Sas and the receptor-type tyrosine phosphatase PTP10D as the cell-surface ligand-receptor system that drives tumour-suppressive cell competition. At the interface between the wild-type 'winner' and the polarity-deficient 'loser' clones, winner cells relocalize Sas to the lateral cell surface, whereas loser cells relocalize PTP10D there. This leads to the trans-activation of Sas-PTP10D signalling in loser cells, which restrains EGFR signalling and thereby enables elevated JNK signalling in loser cells, triggering cell elimination. In the absence of Sas-PTP10D, elevated EGFR signalling in loser cells switches the role of JNK from pro-apoptotic to pro-proliferative by inactivating the Hippo pathway, thereby driving the overgrowth of polarity-deficient cells. These findings uncover the mechanism by which normal epithelial cells recognize oncogenic polarity-deficient neighbours to drive cell competition.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Neoplasias/patología , Proteínas Tirosina Fosfatasas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Apoptosis , Polaridad Celular , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Femenino , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ligandos , Masculino , Proteínas de la Membrana/genética , Neoplasias/metabolismo , Transducción de Señal , Activación Transcripcional , Proteínas Supresoras de Tumor/genética
8.
Cancer Sci ; 111(10): 3409-3415, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32677169

RESUMEN

Oncogenic mutations often trigger antitumor cellular response such as induction of apoptosis or cellular senescence. Studies in the last decade have identified the presence of the third guardian against mutation-induced tumorigenesis, namely "cell competition." Cell competition is a context-dependent cell elimination whereby cells with higher fitness eliminate neighboring cells with lower fitness by inducing cell death. While oncogene-induced apoptosis or oncogene-induced senescence acts as a cell-autonomous tumor suppressor, cell competition protects the tissue from tumorigenesis via cell-cell communication. For instance, in Drosophila epithelium, oncogenic cells with cell polarity mutations overproliferate and develop into tumors on their own but are eliminated from the tissue when surrounded by wild-type cells. Genetic studies in flies have unraveled that such tumor-suppressive cell competition is regulated by at least three mechanisms: direct cell-cell interaction between polarity-deficient cells and wild-type cells, secreted factors from epithelial cells, and systemic factors from distant organs. Molecular manipulation of tumor-suppressive cell competition could provide a novel therapeutic strategy against human cancers.


Asunto(s)
Competencia Celular/genética , Competencia Celular/fisiología , Drosophila/genética , Drosophila/fisiología , Animales , Comunicación Celular/genética , Comunicación Celular/fisiología , Células Epiteliales/fisiología , Humanos , Mutación/genética , Oncogenes/genética
9.
Genes Cells ; 23(3): 234-240, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29431244

RESUMEN

Cells heterozygously mutant for a ribosomal protein gene, called Minute/+ mutants, are eliminated from epithelium by cell competition when surrounded by wild-type cells. Whereas several factors that regulate Minute cell competition have been identified, the mechanisms how winner/loser status is determined and thereby triggers cell competition are still elusive. To address this, we established two assay systems for Minute cell competition, namely (i) the CORE (competitive elimination of RpS3-RNAi-expressing cells) system in which RpS3-RNAi-expressing wing pouch cells are eliminated from wild-type wing disc and (ii) the SURE (supercompetition of RpS3-expressing clones in RpS3/+ tissue) system in which RpS3-over-expressing clones generated in RpS3/+ wing disc outcompete surrounding RpS3/+ cells. An ectopic over-expression screen using the CORE system identified Wg signaling as a critical regulator of Minute cell competition. Activation of Wg signaling in loser cells suppressed their elimination, whereas down-regulation of Wg signaling in loser cells enhanced their elimination. Furthermore, using the SURE system, we found that down-regulation of Wg signaling in winner cells suppressed elimination of neighboring losers. Our observations suggest that cellular Wg signaling activity is crucial for determining winner/loser status and thereby triggering Minute cell competition.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Transducción de Señal , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/fisiología , Apoptosis , Comunicación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
10.
Dev Growth Differ ; 60(9): 522-530, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30443922

RESUMEN

Cell competition is a context-dependent cell elimination through short-range cell-cell interaction, in which cells with higher fitness eliminate neighboring less-fit or oncogenic cells within the growing tissue. Cell competition can be triggered by many different factors such as heterozygous mutations in the ribosomal protein genes (which are called "Minute" mutations), elevated Myc, Yorkie/YAP, Wg/Wnt, JAK-STAT, Ras, or Src activity, and loss of Mahjong/VprBP, endocytic pathway components, or apicobasal cell polarity. Studies on the mechanisms and roles of cell competition have suggested that cell competition can be divided into two types: selection of fitter cells or elimination of oncogenic cells. The former type of cell competition includes Minute or Myc-induced cell competition that is considered to be dependent on the relative level of protein synthesis. The later type of cell competition includes tumor-suppressive cell competition triggered by loss of cell polarity genes such as scribble (scrib) or discs large (dlg). Genetic studies in Drosophila during the past decade have provided significant progress in understanding the mechanisms of these phenomena. At the same time, these studies have now raised new questions; how do different mechanisms contribute or cooperate to drive cell competition, do common mechanisms exist in different types of cell competition, and what are the physiological roles of these cell competition phenomena?


Asunto(s)
Adaptación Fisiológica/fisiología , Comunicación Celular/fisiología , Proliferación Celular/fisiología , Modelos Biológicos , Adaptación Fisiológica/genética , Animales , Comunicación Celular/genética , Proliferación Celular/genética , Humanos , Mutación , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal/genética
11.
Nature ; 490(7421): 547-51, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23023132

RESUMEN

Mitochondrial respiratory function is frequently impaired in human cancers. However, the mechanisms by which mitochondrial dysfunction contributes to tumour progression remain elusive. Here we show in Drosophila imaginal epithelium that defects in mitochondrial function potently induce tumour progression of surrounding tissue in conjunction with oncogenic Ras. Our data show that Ras activation and mitochondrial dysfunction cooperatively stimulate production of reactive oxygen species, which causes activation of c-Jun amino (N)-terminal kinase (JNK) signalling. JNK cooperates with oncogenic Ras to inactivate the Hippo pathway, leading to upregulation of its targets Unpaired (an interleukin-6 homologue) and Wingless (a Wnt homologue). Mitochondrial dysfunction in Ras-activated cells further cooperates with Ras signalling in neighbouring cells with normal mitochondrial function, causing benign tumours to exhibit metastatic behaviour. Our findings provide a mechanistic basis for interclonal tumour progression driven by mitochondrial dysfunction and oncogenic Ras.


Asunto(s)
Progresión de la Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/patología , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Transformación Celular Neoplásica , Células Clonales/metabolismo , Células Clonales/patología , Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Ojo Compuesto de los Artrópodos/patología , Ojo Compuesto de los Artrópodos/ultraestructura , Modelos Animales de Enfermedad , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Discos Imaginales/metabolismo , Discos Imaginales/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Proteína Oncogénica p21(ras)/genética , Proteína Oncogénica p21(ras)/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Proteína Wnt1/metabolismo
12.
Semin Immunol ; 26(3): 267-74, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24981286

RESUMEN

The TNF and TNFR superfamilies of proteins are conserved throughout evolution. The first invertebrate orthologs of TNF and TNFR, Eiger and Wengen, were identified in Drosophila, which enabled us to take advantage of its powerful genetics. Indeed, genetic studies on Eiger in the last decade have discovered their signaling mechanisms through activation of the JNK pathway and unveiled the role of Eiger-JNK signaling in a variety of cellular and tissue processes such as cell death, cell proliferation, tissue growth regulation, host defense, pain sensitization, and canalization. In this review, we will describe the in vivo signaling of Eiger and its physiological roles in fly development and homeostasis, and will discuss the evolution of the TNF/TNFR systems.


Asunto(s)
Evolución Biológica , Receptores del Factor de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Receptores del Factor de Necrosis Tumoral/inmunología , Receptores del Factor de Necrosis Tumoral/metabolismo , Receptores del Factor de Necrosis Tumoral/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
13.
Adv Exp Med Biol ; 1076: 173-194, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951820

RESUMEN

Over the last few decades, Drosophila cancer models have made great contributions to our understanding toward fundamental cancer processes. Particularly, the development of genetic mosaic technique in Drosophila has enabled us to recapitulate basic aspects of human cancers, including clonal evolution, tumor microenvironment, cancer cachexia, and anticancer drug resistance. The mosaic technique has also led to the discovery of important tumor-suppressor pathways such as the Hippo pathway and the elucidation of the mechanisms underlying tumor growth and metastasis via regulation of cell polarity, cell-cell cooperation, and cell competition. Recent approaches toward identification of novel therapeutics using fly cancer models have further proved Drosophila as a robust system with great potentials for cancer research as well as anti-cancer therapy.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster , Neoplasias , Animales , Humanos
14.
Dev Biol ; 403(2): 162-71, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25967126

RESUMEN

The c-Jun N-terminal kinase (JNK) pathway is a dual-functional oncogenic signaling that exerts both anti- and pro-tumor activities. However, the mechanism by which JNK switches its oncogenic roles depending on different cellular contexts has been elusive. Here, using the Drosophila genetics, we show that hyperactive Ras acts as a signaling switch that converts JNK's role from anti- to pro-tumor signaling through the regulation of Hippo signaling activity. In the normal epithelium, JNK signaling antagonizes the Hippo pathway effector Yorkie (Yki) through elevation of Warts activity, thereby suppressing tissue growth. In contrast, in the presence of hyperactive Ras, JNK signaling enhances Yki activation by accumulating F-actin through the activity of the LIM domain protein Ajuba, thereby promoting tissue growth. We also find that the epidermal growth factor receptor (EGFR) signaling uses this Ras-mediated conversion of JNK signaling to promote tissue growth. Our observations suggest that Ras-mediated switch of the JNK pathway from anti- to pro-tumor signaling could play crucial roles in tumorigenesis as well as in normal development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Discos Imaginales/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas/metabolismo , Proteínas ras/metabolismo , Animales , Proteínas de Drosophila/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
15.
J Theor Biol ; 404: 40-50, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27234645

RESUMEN

The phenomenon of 'cell competition' has been implicated in the normal development and maintenance of organs, such as in the regulation of organ size and suppression of neoplastic development. In cell competition, one group of cells competes with another group through an interaction at their interface. Which cell group "wins" is governed by a certain relative fitness within the cells. However, this idea of cellular fitness has not been clearly defined. We construct two types of mathematical models to describe this phenomenon of cell competition by considering the interaction at the interface as a predator-prey type interaction in a monolayer tissue such as epithelium. Both of these models can reproduce several typical experimental observations involving systems of mutant cells (losers) and normal cells (winners). By analyzing one of the model and defining an index for the degree of fitness in groups of cells, we show that the fate of each group mainly depends on the relative carrying capacities of certain resources and the strength of the predator-prey interaction at the interface. This contradicts the classical hypothesis in which the relative proliferation rate determines the winner.


Asunto(s)
Células/metabolismo , Modelos Teóricos , Movimiento Celular , Proliferación Celular , Mutación/genética
16.
Dev Biol ; 395(1): 19-28, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25224221

RESUMEN

Deregulation of the endocytic machinery has been implicated in human cancers. However, the mechanism by which endocytic defects drive cancer development remains to be clarified. Here, we find through a genetic screen in Drosophila that loss of Rab5, a protein required for early endocytic trafficking, drives non-autonomous cell proliferation in imaginal epithelium. Our genetic data indicate that dysfunction of Rab5 leads to cell-autonomous accumulation of Eiger (a TNF homolog) and EGF receptor (EGFR), which causes activation of downstream JNK and Ras signaling, respectively. JNK signaling and its downstream component Cdc42 cooperate with Ras signaling to induce upregulation of a secreted growth factor Upd (an IL-6 homolog) through inactivation of the Hippo pathway. Such non-autonomous tissue growth triggered by Rab5 defect could contribute to epithelial homeostasis as well as cancer development within heterogeneous tumor microenvironment.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas ras/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ojo/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Discos Imaginales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Modelos Biológicos , Modelos Genéticos , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/genética , Proteínas de Unión al GTP rab5/genética , Proteínas ras/genética
17.
Cancer Sci ; 106(12): 1651-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26362609

RESUMEN

Tumor progression is classically viewed as the Darwinian evolution of subclones that sequentially acquire genetic mutations and autonomously overproliferate. However, growing evidence suggests that tumor microenvironment and subclone heterogeneity contribute to non-autonomous tumor progression. Recent Drosophila studies revealed a common mechanism by which clones of genetically altered cells trigger non-autonomous overgrowth. Such "oncogenic niche cells" (ONCs) do not overgrow but instead stimulate neighbor overgrowth and metastasis. Establishment of ONCs depends on competition and cooperation between heterogeneous cell populations. This review characterizes diverse ONCs identified in Drosophila and describes the genetic basis of non-autonomous tumor progression. Similar mechanisms may contribute to mammalian cancer progression and recurrence.


Asunto(s)
Carcinogénesis/patología , Neoplasias/patología , Microambiente Tumoral/fisiología , Animales , Carcinogénesis/genética , Drosophila , Humanos , Neoplasias/genética
18.
EMBO Rep ; 14(1): 65-72, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23196366

RESUMEN

Cell-cell interactions within the tumour microenvironment have crucial roles in epithelial tumorigenesis. Using Drosophila genetics, we show that the oncoprotein Src controls tumour microenvironment by Jun N-terminal kinase (JNK)-dependent regulation of the Hippo pathway. Clones of cells with elevated Src expression activate the Rac-Diaphanous and Ras-mitogen-activated protein kinase (MAPK) pathways, which cooperatively induce F-actin accumulation, thereby leading to activation of the Hippo pathway effector Yorkie (Yki). Simultaneously, Src activates the JNK pathway, which antagonizes the autonomous Yki activity and causes propagation of Yki activity to neighbouring cells, resulting in the overgrowth of surrounding tissue. Our data provide a mechanism to explain how oncogenic mutations regulate tumour microenvironment through cell-cell communication.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Larva/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Comunicación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Larva/genética , MAP Quinasa Quinasa 4/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transactivadores/genética , Transactivadores/metabolismo , Microambiente Tumoral , Proteínas Señalizadoras YAP , Familia-src Quinasas/genética
19.
Proc Natl Acad Sci U S A ; 108(47): 18977-82, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22065747

RESUMEN

Caspase-independent cell death is known to be important in physiological and pathological conditions, but its molecular regulation is not well-understood. Eiger is the sole fly ortholog of TNF. The ectopic expression of Eiger in the developing eye primordium caused JNK-dependent but caspase-independent cell death. To understand the molecular basis of this Eiger-induced nonapoptotic cell death, we performed a large-scale genetic screen in Drosophila for suppressors of the Eiger-induced cell death phenotype. We found that molecules that regulate metabolic energy production are central to this form of cell death: it was dramatically suppressed by decreased levels of molecules that regulate cytosolic glycolysis, mitochondrial ß-oxidation of fatty acids, the tricarboxylic acid cycle, and the electron transport chain. Importantly, reducing the expression of energy production-related genes did not affect the cell death triggered by proapoptotic genes, such as reaper, hid, or debcl, indicating that the energy production-related genes have a specific role in Eiger-induced nonapoptotic cell death. We also found that energy production-related genes regulate the Eiger-induced cell death downstream of JNK. In addition, Eiger induced the production of reactive oxygen species in a manner dependent on energy production-related genes. Furthermore, we showed that this cell death machinery is involved in Eiger's physiological function, because decreasing the energy production-related genes suppressed Eiger-dependent tumor suppression, an intrinsic mechanism for removing tumorigenic mutant clones from epithelia by inducing cell death. This result suggests a link between sensitivity to cell death and metabolic activity in cancer.


Asunto(s)
Muerte Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/embriología , Metabolismo Energético/fisiología , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/metabolismo , Metabolismo Energético/genética , Ojo/metabolismo , Genotipo , Inmunohistoquímica , Proteínas de la Membrana/metabolismo , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo
20.
FEBS Lett ; 598(4): 379-389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38351618

RESUMEN

Multicellular communities have an intrinsic mechanism that optimizes their structure and function via cell-cell communication. One of the driving forces for such self-organization of the multicellular system is cell competition, the elimination of viable unfit or deleterious cells via cell-cell interaction. Studies in Drosophila and mammals have identified multiple mechanisms of cell competition caused by different types of mutations or cellular changes. Intriguingly, recent studies have found that different types of "losers" of cell competition commonly show reduced protein synthesis. In Drosophila, the reduction in protein synthesis levels in loser cells is caused by phosphorylation of the translation initiation factor eIF2α via a bZip transcription factor Xrp1. Given that a variety of cellular stresses converge on eIF2α phosphorylation and thus global inhibition of protein synthesis, cell competition may be a machinery that optimizes multicellular fitness by removing stressed cells. In this review, we summarize and discuss emerging signaling mechanisms and critical unsolved questions, as well as the role of protein synthesis in cell competition.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Competencia Celular , Transducción de Señal , Drosophila/metabolismo , Comunicación Celular , Mamíferos/metabolismo , Proteínas de Unión al ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA