Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EMBO J ; 43(10): 1947-1964, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605225

RESUMEN

Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator. Release of these gene loci from heterochromatin in response to B-cell receptor stimulation was coupled to AKT-mTOR pathway activation. In Bach2-deficient B cells, PC genes' activation depended on IRF4 protein accumulation, without an increase in Irf4 mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B cells promoted BACH2 function by inducing gene expression of Bach2 and Pten, a negative regulator of AKT signaling. Elevated AKT activity in Bach2-deficient B cells resulted in IRF4 protein accumulation. Thus, BACH2 and IRF4 mutually modulate the activity of each other, and BACH2 inhibits PC differentiation by both the repression of PC genes and the restriction of IRF4 protein accumulation.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Diferenciación Celular , Factores Reguladores del Interferón , Células Plasmáticas , Animales , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Linfocitos B/citología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Diferenciación Celular/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Cambio de Clase de Inmunoglobulina/genética , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Células Plasmáticas/metabolismo , Células Plasmáticas/inmunología , Células Plasmáticas/citología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Transactivadores/metabolismo , Transactivadores/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38981617

RESUMEN

Immunoglobulin A (IgA)-mediated mucosal immunity is important for the host because it contributes to reducing infection risk and to establishing host-microbe symbiosis. BTB and CNC homology 1 (Bach1) is a transcriptional repressor with physiological and pathophysiological functions that are of particular interest for their relation to gastrointestinal diseases. However, Bach1 effects on IgA-mediated mucosal immunity remain unknown. For this study using Bach1-deficient (Bach1-/-) mice, we investigated the function of Bach1 in IgA-mediated mucosal immunity. Intestinal mucosa, feces, and plasma IgA were examined using immunosorbent assay. After cell suspensions were prepared from Peyer's patches and colonic lamina propria, they were examined using flow cytometry. The expression level of polymeric immunoglobulin receptor (pIgR), which plays an important role in the transepithelial transport of IgA, was evaluated using Western blotting, quantitative real-time PCR, and immunohistochemistry. Although no changes in the proportions of IgA-producing cells were observed, the amounts of IgA in the intestinal mucosa were increased in Bach1-/- mice. Furthermore, plasma IgA was increased in Bach1-/- mice, but fecal IgA was decreased, indicating that Bach1-/- mice have abnormal secretion of IgA into the intestinal lumen. In fact, Bach1 deficiency reduced pIgR expression in colonic mucosa at both the protein and mRNA levels. In the human intestinal epithelial cell line LS174T, suppression of Bach1 reduced pIgR mRNA stability. In contrast, overexpression of Bach1 increased pIgR mRNA stability. These results demonstrate that Bach1 deficiency causes abnormal secretion of IgA into the intestinal lumen via suppression of pIgR expression.

3.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673728

RESUMEN

BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the metabolism of iron, heme and reactive oxygen species. While BACH1 is rapidly degraded when it is bound to heme, it remains unclear how BACH1 degradation is regulated under other conditions. We found that FBXO22, a ubiquitin ligase previously reported to promote BACH1 degradation, polyubiquitinated BACH1 only in the presence of heme in a highly purified reconstitution assay. In parallel to this regulatory mechanism, TANK binding kinase 1 (TBK1), a protein kinase that activates innate immune response and regulates iron metabolism via ferritinophagy, was found to promote BACH1 degradation when overexpressed in 293T cells. While TBK1 phosphorylated BACH1 at multiple serine and threonine residues, BACH1 degradation was observed with not only the wild-type TBK1 but also catalytically impaired TBK1. The BACH1 degradation in response to catalytically impaired TBK1 was not dependent on FBXO22 but involved both autophagy-lysosome and ubiquitin-proteasome pathways judging from its suppression by using inhibitors of lysosome and proteasome. Chemical inhibition of TBK1 in hepatoma Hepa1 cells showed that TBK1 was not required for the heme-induced BACH1 degradation. Its inhibition in Namalwa B lymphoma cells increased endogenous BACH1 protein. These results suggest that TBK1 promotes BACH1 degradation in parallel to the FBXO22- and heme-dependent pathway, placing BACH1 as a downstream effector of TBK1 in iron metabolism or innate immune response.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas F-Box , Hemo , Proteínas Serina-Treonina Quinasas , Proteolisis , Receptores Citoplasmáticos y Nucleares , Humanos , Hemo/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Células HEK293 , Ubiquitinación , Línea Celular Tumoral , Lisosomas/metabolismo , Autofagia , Complejo de la Endopetidasa Proteasomal/metabolismo
4.
Cell Rep ; 43(7): 114403, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38943639

RESUMEN

Ferroptosis is a type of regulated cell death characterized by iron-dependent lipid peroxidation. A model cell system is constructed to induce ferroptosis by re-expressing the transcription factor BACH1, a potent ferroptosis inducer, in immortalized mouse embryonic fibroblasts (iMEFs). The transfer of the culture supernatant from ferroptotic iMEFs activates the proliferation of hepatoma cells and other fibroblasts and suppresses cellular senescence-like features. The BACH1-dependent secretion of the longevity factor FGF21 is increased in ferroptotic iMEFs. The anti-senescent effects of the culture supernatant from these iMEFs are abrogated by Fgf21 knockout. BACH1 activates the transcription of Fgf21 by promoting ferroptotic stress and increases FGF21 protein expression by suppressing its autophagic degradation through transcriptional Sqstm1 and Lamp2 repression. The BACH1-induced ferroptotic FGF21 secretion suppresses obesity in high-fat diet-fed mice and the short lifespan of progeria mice. The inhibition of these aging-related phenotypes can be physiologically significant regarding ferroptosis.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Senescencia Celular , Ferroptosis , Factores de Crecimiento de Fibroblastos , Obesidad , Animales , Ferroptosis/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Obesidad/metabolismo , Obesidad/patología , Ratones , Longevidad , Humanos , Ratones Endogámicos C57BL , Fibroblastos/metabolismo , Autofagia , Dieta Alta en Grasa , Ratones Noqueados , Masculino , Proteína Sequestosoma-1/metabolismo
5.
Sci Rep ; 14(1): 4409, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388563

RESUMEN

Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer.


Asunto(s)
Ciclohexilaminas , Ferroptosis , Neoplasias Pancreáticas , Fenilendiaminas , Ratones , Animales , Gemcitabina , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos Insaturados/metabolismo , Ácido Linoleico , Línea Celular Tumoral , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA