Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Environ Qual ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764352

RESUMEN

Cropland agriculture in the northern Great Plains is challenged by variable weather, agricultural intensification, and competing use for energy development. Innovative cropland practices that address these challenges are needed to ensure regional agriculture can sustainably meet future food, fuel, and fiber demand. In response to this need, the Northern Plains Long-Term Agroecosystem Research Network site established a cropland experiment in 2019 that contrasts prevailing and alternative practices at plot and field scales over a proposed 30-year time frame. The experimental site is located on the Area IV Soil Conservation Districts Cooperative Research Farm near Mandan, ND. Cropping practices for the first 6 years of the experiment were developed with input from stakeholders and include a 3-year crop rotation of spring wheat (Triticum aestivum L.), corn (Zea mays L.), and soybean (Glycine max L.) with cover crops (alternative practice) and without (prevailing practice). The prevailing practice also involves the removal of crop residue, while a second alternative practice of perennial forages is included in the plot-scale experiment. Biophysical measurements are made at both spatial scales at frequencies aligned with approved methods for each agronomic and environmental metric. Findings from the first 6 years of the experiment will help identify tradeoffs associated with cover crop use and residue removal in dryland cropping systems. In the future, the experiment will adopt a knowledge co-production approach whereby researchers and stakeholders will work collaboratively to identify problems, implement research, and interpret results.

2.
Front Plant Sci ; 13: 834447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371139

RESUMEN

Since the assessment of wheat diseases (e.g., leaf rust and tan spot) via visual observation is subjective and inefficient, this study focused on developing an automatic, objective, and efficient diagnosis approach. For each plant, color, and color-infrared (CIR) images were collected in a paired mode. An automatic approach based on the image processing technique was developed to crop the paired images to have the same region, after which a developed semiautomatic webtool was used to expedite the dataset creation. The webtool generated the dataset from either image and automatically built the corresponding dataset from the other image. Each image was manually categorized into one of the three groups: control (disease-free), disease light, and disease severity. After the image segmentation, handcrafted features (HFs) were extracted from each format of images, and disease diagnosis results demonstrated that the parallel feature fusion had higher accuracy over features from either type of image. Performance of deep features (DFs) extracted through different deep learning (DL) models (e.g., AlexNet, VGG16, ResNet101, GoogLeNet, and Xception) on wheat disease detection was compared, and those extracted by ResNet101 resulted in the highest accuracy, perhaps because deep layers extracted finer features. In addition, parallel deep feature fusion generated a higher accuracy over DFs from a single-source image. DFs outperformed HFs in wheat disease detection, and the DFs coupled with parallel feature fusion resulted in diagnosis accuracies of 75, 84, and 71% for leaf rust, tan spot, and leaf rust + tan spot, respectively. The methodology developed directly for greenhouse applications, to be used by plant pathologists, breeders, and other users, can be extended to field applications with future tests on field data and model fine-tuning.

3.
Front Plant Sci ; 12: 645977, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841474

RESUMEN

Accurate acquisition of plant phenotypic information has raised long-standing concerns in support of crop breeding programs. Different methods have been developed for high throughput plant phenotyping, while they mainly focused on the canopy level without considering the spatiotemporal heterogeneity at different canopy layers and growth stages. This study aims to phenotype spatiotemporal heterogeneity of chlorophyll (Chl) content and fluorescence response within rice leaves and canopies. Multipoint Chl content and high time-resolved Chl a fluorescence (ChlF) transient (OJIP transient) of rice plants were measured at different nitrogen levels and growth stages. Results showed that the Chl content within the upper leaves exhibited an increasing trend from the basal to the top portions but a decreasing pattern within the lower leaves at the most growth stages. Leaf Chl content within the rice canopy was higher in the lower leaves in the vegetative phase, while from the initial heading stage the pattern gradually reversed with the highest Chl content appearing in the upper leaves. Nitrogen supply mainly affects the occurrence time of the reverse vertical pattern. This could be the result of different nutritional demands of leaves transforming from sinks to sources, and it was further confirmed by the fall of the JI phase of OJIP transient in the vegetative phase and the rise in the reproductive phase. We further deduced that the vertical distribution of Chl content could have a defined pattern at a specific growth stage. Furthermore, the reduction of end acceptors at photosystem I (PSI) electron acceptor side per cross section (RE0/CS) was found to be a potential sensitive predictor for identifying the vertical heterogeneity of leaf Chl content. These findings provide prior knowledge on the vertical profiles of crop physiological traits, which explore the opportunity to develop more efficient plant phenotyping tools for crop breeding.

4.
J Air Waste Manag Assoc ; 70(4): 436-454, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32049604

RESUMEN

Green energy generation from agricultural waste has the potential to minimize dependency on fossil and reduce the resultant environmental impact of this fuel provided anaerobic reactor performance is optimized. Hence, the interactive impact of carbon to nitrogen (C/N) ratio, particle size, and co-digestion of dairy manure (DM) and corn stover (CS) on solid-state anaerobic digester (SSAD) performance was investigated with four treatments (DMCS24S, DMCS24L, DMCS28L, and DMCS32L) in this solid-state study. Novel scanning electron microscope (SEM) image analysis utilized to describe the corn stover using ImageJ indicated that corn stover of particle size 0.18-0.42 mm had lower rough surface texture relative to the 0.42-0.84 mm size. This observation not only influenced the ingestate degradation, the bioconversion rate was negatively affected by 0.18-0.42 mm particle size of corn stover. Notably, increase in C/N ratio led to decrease in total ammonia nitrogen (TAN) and alkalinity concentration (Alk), hence, treatments with the lowest C/N ratio had better reactor performance in terms of suitable process parameters such as Alk, pH, ORP, and TAN. Furthermore, DMCS24L treatment had the highest methane yield (106 mL/g VS) and net methane energy (2.92 MJ/kg). Interestingly, modified Gompertz model gave the best kinetic description of the methane production. This SSAD mesophilic study suggests that corn stover, with particle size of 0.42-0.84 mm, co-digested with dairy manure under a C/N ratio of 24 has the potential to enhance methane yield and optimize reactor performance.Implications: The utilization of agricultural waste for bioenergy generation through solid-state anaerobic digestion could be enhanced through the interactive impact of substrate particle size, carbon-to-nitrogen (C/N) ratio and co-digestion, which has not been previously studied. These ternary factors significantly improved reactor performance and enhanced methane yield when corn stover of 0.42-0.84 mm particle size was co-digested with dairy manure to achieve a C/N ratio of 24.


Asunto(s)
Biocombustibles/análisis , Reactores Biológicos , Estiércol , Metano/análisis , Zea mays , Anaerobiosis , Animales , Carbono/análisis , Bovinos , Nitrógeno/análisis , Tamaño de la Partícula
5.
Bioresour Technol ; 99(7): 2254-64, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17627819

RESUMEN

A linear knife grid device was developed for first-stage size reduction of high- and low-moisture switchgrass (Panicum virgatum L.), a tough, fibrous perennial grass being considered as a feedstock for bioenergy. The size reduction is by a shearing action accomplished by forcing a thick packed bed of biomass against a grid of sharp knives. The system is used commercially for slicing forages for drying or feed mixing. No performance data or engineering equations are available in published literature to optimize the machine and the process for biomass size reductions. Tests of a linear knife grid with switchgrass quantified the combined effect of shearing stresses, packed bed consolidation, and frictional resistance to flow through a knife grid. A universal test machine (UTM) measured load-displacement of switchgrass at two moisture contents: 51%, and 9% wet basis; three knife grid spacings: 25.4, 50.8, and 101.6mm; and three packed bed depths: 50.8, 101.6, and 152.4mm. Results showed that peak load, ultimate shear stress, and cutting energy values varied inversely with knife grid spacing and directly with packed bed depth (except ultimate shear stress). Mean ultimate shear stresses of high- and low-moisture switchgrass were 0.68+/-0.24, and 0.41+/-0.21 MPa, mass-based cutting energy values were 4.50+/-4.43, and 3.64+/-3.31 MJ/dry Mg, and cutting energy based on new surface area, calculated from packed-circle theory, were 4.12+/-2.06, and 2.53+/-0.45 kJ/m2, respectively. The differences between high- and low-moisture switchgrass were significant (P<0.05), such that high-moisture switchgrass required increased shear stress and cutting energy. Reduced knife grid spacing and increased packed bed depths required increased cutting energy. Overall, knife grid cutting energy was much less than energy values published for rotary equipment. A minimum knife grid spacing of 25.4mm appears to be a practical lower limit, considering the high ram force that would be needed for commercial operation. However, knife grid spacing from 50 to 100mm and greater may offer an efficient first-stage size reduction, especially well suited for packaged (baled) biomass. Results of this research should aid the engineering design of size reduction equipment for commercial facilities.


Asunto(s)
Poaceae , Biomasa , Agua
6.
Bioresour Technol ; 99(14): 6365-71, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18226891

RESUMEN

Occurrence of mold was visually monitored for 26days on samples of major anatomical components of corn stover maintained at several storage temperatures (T) and water activities (a(w)). Glass desiccators with saturated salt solutions placed in temperature controlled chambers provided simulated storage conditions with temperatures ranging from 10 degrees C to 40 degrees C and water activities ranging from 0.11 to 0.98. Mold affected leaf, stalk skin, and stalk pith equally at water activity greater than 0.9. As expected, a combination of increased water activity greater than 0.9 and temperatures greater than 30 degrees C was conducive to mold growth. Based on material moisture content during the initial mold growth, it was postulated that among the corn stover components the stalk pith was the least resistant to mold growth followed by stalk skin and leaf for the studied range of temperature and water activity. Mold growth models fitted well with the observation. A linear mold-free days predictions using a three-parameter regression model (T, a(w), and T x a(w)) was superior (R(2)=0.99) to other models considered. The exponential spoilage model using two parameter T and a(w) also gave comparable performance (R(2)=0.95). Among the independent factors, T x a(w) product was the most significant (p=0.0069) followed by T (p=0.0114), and a(w) (p=0.3140) in explaining the experimental data. The developed models can be applied to predict the safe storage period of corn stover components exposed to various temperature and moisture environmental conditions.


Asunto(s)
Hongos , Modelos Teóricos , Agua/química , Zea mays/microbiología , Hongos/crecimiento & desarrollo , Zea mays/química
7.
Bioresour Technol ; 185: 89-98, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25756207

RESUMEN

Integral reaction heats of switchgrass, big bluestem, and corn stalks were determined using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). Iso-conversion differential reaction heats using TGA/DSC pyrolysis and combustion of biomass were not available, despite reports available on heats required and released. A concept of iso-conversion differential reaction heats was used to determine the differential reaction heats of each thermal characteristics segment of these materials. Results showed that the integral reaction heats were endothermic from 30 to 700°C for pyrolysis of switchgrass and big bluestem, but they were exothermic for corn stalks prior to 587°C. However, the integral reaction heats for combustion of the materials followed an endothermic to exothermic transition. The differential reaction heats of switchgrass pyrolysis were predominantly endothermic in the fraction of mass loss (0.0536-0.975), and were exothermic for corn stalks (0.0885-0.850) and big bluestem (0.736-0.919). Study results provided better insight into biomass thermal mechanism.


Asunto(s)
Rastreo Diferencial de Calorimetría/métodos , Calefacción/métodos , Modelos Químicos , Tallos de la Planta/química , Termogravimetría/métodos , Simulación por Computador , Transferencia de Energía , Modelos Biológicos , Temperatura , Conductividad Térmica , Termodinámica
8.
Micron ; 78: 45-53, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26312735

RESUMEN

The size and arrangement of stromal collagen fibrils (CFs) influence the optical properties of the cornea and hence its function. The spatial arrangement of the collagen is still questionable in relation to the diameter of collagen fibril. In the present study, we introduce a new parameter, edge-fibrillar distance (EFD) to measure how two collagen fibrils are spaced with respect to their closest edges and their spatial distribution through normalized standard deviation of EFD (NSDEFD) accessed through the application of two commercially available multipurpose solutions (MPS): ReNu and Hippia. The corneal buttons were soaked separately in ReNu and Hippia MPS for five hours, fixed overnight in 2.5% glutaraldehyde containing cuprolinic blue and processed for transmission electron microscopy. The electron micrographs were processed using ImageJ user-coded plugin. Statistical analysis was performed to compare the image processed equivalent diameter (ED), inter-fibrillar distance (IFD), and EFD of the CFs of treated versus normal corneas. The ReNu-soaked cornea resulted in partly degenerated epithelium with loose hemidesmosomes and Bowman's collagen. In contrast, the epithelium of the cornea soaked in Hippia was degenerated or lost but showed closely packed Bowman's collagen. Soaking the corneas in both MPS caused a statistically significant decrease in the anterior collagen fibril, ED and a significant change in IFD, and EFD than those of the untreated corneas (p<0.05, for all comparisons). The introduction of EFD measurement in the study directly provided a sense of gap between periphery of the collagen bundles, their spatial distribution; and in combination with ED, they showed how the corneal collagen bundles are spaced in relation to their diameters. The spatial distribution parameter NSDEFD indicated that ReNu treated cornea fibrils were uniformly distributed spatially, followed by normal and Hippia. The EFD measurement with relatively lower standard deviation and NSDEFD, a characteristic of uniform CFs distribution, can be an additional parameter used in evaluating collagen organization and accessing the effects of various treatments on corneal health and transparency.


Asunto(s)
Soluciones para Lentes de Contacto/toxicidad , Córnea/química , Córnea/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Animales , Bovinos , Soluciones para Lentes de Contacto/administración & dosificación , Córnea/efectos de los fármacos , Matriz Extracelular/ultraestructura , Colágenos Fibrilares/análisis
9.
Bioresour Technol ; 116: 36-41, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22609652

RESUMEN

Switchgrass was pelleted to evaluate the effect of densification on acidic and alkaline pretreatment efficacy. Bulk density and durability of pellets were 724 kg/m(3) and 95%, respectively. Ground switchgrass (D(90) = 21.7 mm) was further ground to a fine power (D(90) = 0.5mm) in the pellet mill prior to densification. This grinding increased enzymatic hydrolyzate glucose yields of non-pretreated materials by 210%. Pelleting had no adverse impact on dilute acid pretreatment efficacy. Grinding and pelleting increased hydrolyzate glucose yields of switchgrass pretreated by soaking in aqueous ammonia (SAA) by 37%. Xylose yields from SAA-pretreated switchgrass pellets were 42% higher than those from the original biomass. Increases in sugar yields from SAA-pretreated pelleted biomass are attributed to grinding and heating of biomass during the pelleting process. Potential transportation, storage, and handling benefits of biomass pelleting may be achieved without negatively affecting the downstream processing steps of pretreatment or enzymatic hydrolysis.


Asunto(s)
Biotecnología/métodos , Enzimas/metabolismo , Panicum/metabolismo , Amoníaco/farmacología , Glucosa/biosíntesis , Hidrólisis/efectos de los fármacos , Panicum/efectos de los fármacos , Tamaño de la Partícula , Ácidos Sulfúricos/farmacología , Xilosa/biosíntesis
10.
Bioresour Technol ; 101(11): 4220-7, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20137915

RESUMEN

Measurement of volume, surface area, and density is an essential for quantifying, evaluating, and designing the biomass densification, storage, and transport operations. Acquiring accurate and repeated measurements of these parameters for hygroscopic densified biomass are not straightforward and only a few methods are available. A 3D laser scanner was used as a measurement device and the 3D images were analyzed using image processing software. The validity of the method was verified using reference objects of known geometry and the accuracy obtained was in excess of 98%. Cotton gin trash briquettes, switchgrass pellets, switchgrass cubes, hardwood pellets, and softwood chips were tested. Most accurate results of the volume and surface area required the highest possible resolution of the scanner, which increased the total scan-process times, and image file size. Physical property determination using the 3D scanning and image analysis is highly repeatable (coefficient of variation <0.3%), non-invasive, accurate, and alternative methodology. The various limitations and merits of the developed method were also enumerated.


Asunto(s)
Biomasa , Imagenología Tridimensional , Programas Informáticos
11.
Bioresour Technol ; 101(16): 6528-37, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20371174

RESUMEN

A novel simplified stereometric measurement method for determining the macro-porosity of wood pellets through geometrical approach was successfully developed and tested. The irregular ends of pellets of circular cross-section were sanded flat so that their geometry becomes cylinder and their volumes evaluated using mensuration formula. Such formed cylindrical pellets were loose or tap filled to selected volumes to evaluate the macro-porosity and the constant specific weight. The method was extended to evaluate actual wood pellets properties. Overall macro-porosity of actual wood pellets was determined as 41.0+/-2.5% and 35.5+/-2.7%, mean bulk density as 670+/-29 kg m(-3) and 731+/-31 kg m(-3), and classified as "Class-3:Medium" and "Class-3&4:Medium to Low" for loose and tapped fills, respectively. Hausner ratio and Carr's compressibility index classify wood pellets as "freely flowing." The developed stereometric method can be used as a handy inexpensive laboratory procedure to estimate the macro-porosity of different types and makes of wood pellets and other similar packaged materials.


Asunto(s)
Madera , Agua/análisis
12.
Bioresour Technol ; 101(1): 207-14, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19699634

RESUMEN

Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.


Asunto(s)
Densitometría/métodos , Manipulación de Alimentos/métodos , Ensayo de Materiales/métodos , Componentes Aéreos de las Plantas/química , Poaceae/química , Triticum/química , Zea mays/química , Fuerza Compresiva , Simulación por Computador , Modelos Químicos
13.
Bioresour Technol ; 100(21): 5176-88, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19559601

RESUMEN

Biomass particle size impacts handling, storage, conversion, and dust control systems. Switchgrass (Panicum virgatum L.) particle size distributions created by a knife mill were determined for integral classifying screen sizes from 12.7 to 50.8 mm, operating speeds from 250 to 500 rpm, and mass input rates from 2 to 11 kg/min. Particle distributions were classified with standardized sieves for forage analysis that included horizontal sieving motion with machined-aluminum sieves of thickness proportional to sieve opening dimensions. Then, a wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Correlation coefficient of geometric mean length with knife mill screen size, feed rate, and speed were 0.872, 0.349, and 0.037, respectively. Hence, knife mill screen size largely determined particle size of switchgrass chop. Feed rate had an unexpected influence on particle size, though to a lesser degree than screen size. The Rosin-Rammler function fit the chopped switchgrass size distribution data with an R(2)>0.982. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Uniformity coefficient was more than 4.0, which indicated a large assortment of particles and also represented a well-graded particle size distribution. Knife mill chopping of switchgrass produced 'strongly fine skewed mesokurtic' particles with 12.7-25.4 mm screens and 'fine skewed mesokurtic' particles with 50.8 mm screen. Results of this extensive analysis of particle sizes can be applied to selection of knife mill operating parameters to produce a particular size of switchgrass chop, and will serve as a guide for relations among the various analytic descriptors of biomass particle distributions.


Asunto(s)
Industrias , Panicum/química , Tamaño de la Partícula
14.
Bioresour Technol ; 100(24): 6578-85, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19683916

RESUMEN

Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.


Asunto(s)
Biotecnología/instrumentación , Fenómenos Mecánicos , Panicum , Triticum , Zea mays , Biomasa , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA