RESUMEN
Keratocan is an extracellular matrix protein that belongs to the small leucine-rich proteoglycan family that also includes lumican, biglycan, decorin, mimecan, and fibromodulin. Members of this family are known to play a role in regulating cellular processes such as proliferation and modulation of osteoprogenitor lineage differentiation. The aims of this study were to evaluate the expression pattern of the keratocan within the osteoprogenitor lineage and to assess its role in regulating osteoblast maturation and function. Results from gene expression analyses of cells at different maturation stages within the osteoblast lineage indicate that keratocan is differentially expressed by osteoblasts and shows little or no expression by osteocytes. During primary osteoblast cultures, high keratocan mRNA expression was observed on day 14, whereas lower expression was detected at days 7 and 21. To assess the effects of keratocan on osteoprogenitor cell differentiation, we evaluated primary calvarial cell cultures from keratocan-deficient mice. The mineralization of calvarial osteoblast cultures derived from keratocan null (Kera-/-) mice was lower than in wild-type osteoblast cultures. Furthermore, analysis of RNA derived from Kera-/- calvarial cell cultures showed a reduction in the mature osteoblast differentiation markers, that is, bone sialoprotein and osteocalcin. In addition, we have evaluated the bone formation in keratocan-deficient mice. Histomorphometric analysis indicated that homozygous knockout mice have significantly decreased rates of bone formation and mineral apposition. Taken together, our results demonstrate the expression of keratocan by osteoblast lineage cells and its ability to modulate osteoblast function.
Asunto(s)
Diferenciación Celular/fisiología , Osteoblastos/metabolismo , Osteogénesis/fisiología , Proteoglicanos/biosíntesis , Proteoglicanos/fisiología , Animales , Desarrollo Óseo/fisiología , Ratones , Ratones Noqueados , Osteocitos/metabolismo , Osteogénesis/efectos de los fármacos , Proteoglicanos/deficiencia , ARN Mensajero/metabolismo , Cráneo/citologíaRESUMEN
BACKGROUND: High-mobility group box-1 (HMGB1) is a nuclear factor released by necrotic cells and by activated immune cells. HMGB1 signals via members of the toll-like receptor family and the receptor for advanced glycation end products (RAGE). Although HMGB1 has been implicated in ischemia/reperfusion (I/R) injury of the liver and lung, its role in I/R injury of the heart remains unclear. METHODS AND RESULTS: Here, we demonstrate that HMGB1 acts as an early mediator of inflammation and organ damage in I/R injury of the heart. HMGB1 levels were already elevated 30 minutes after hypoxia in vitro and in ischemic injury of the heart in vivo. Treatment of mice with recombinant HMGB1 worsened I/R injury, whereas treatment with HMGB1 box A significantly reduced infarct size and markers of tissue damage. In addition, HMGB1 inhibition with recombinant HMGB1 box A suggested an involvement of the mitogen-activated protein kinases jun N-terminal kinase and extracellular signal-regulated kinase 1/2, as well as the nuclear transcription factor nuclear factor-kappaB in I/R injury. Interestingly, infarct size and markers of tissue damage were not affected by administration of recombinant HMGB1 or HMGB1 antagonists in RAGE(-/-) mice, which demonstrated significantly reduced damage in reperfused hearts compared with wild-type mice. Coincubation studies using recombinant HMGB1 in vitro induced an inflammatory response in isolated macrophages from wild-type mice but not in macrophages from RAGE(-/-) mice. CONCLUSIONS: HMGB1 plays a major role in the early event of I/R injury by binding to RAGE, resulting in the activation of proinflammatory pathways and enhanced myocardial injury. Therefore, blockage of HMGB1 might represent a novel therapeutic strategy in I/R injury.
Asunto(s)
Proteína HMGB1/metabolismo , Isquemia Miocárdica/metabolismo , Daño por Reperfusión/prevención & control , Animales , Células Cultivadas , Ecocardiografía , Proteína HMGB1/antagonistas & inhibidores , Proteína HMGB1/farmacología , Inmunohistoquímica , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/patología , Unión Proteica , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Proteínas Recombinantes/farmacología , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Osteocytes are the most abundant osteoblast lineage cells within the bone matrix. They respond to mechanical stimulation and can participate in the release of regulatory proteins that can modulate the activity of other bone cells. We hypothesize that neuropeptide Y (NPY), a neurotransmitter with regulatory functions in bone formation, is produced by osteocytes and can affect osteoblast activity. To study the expression of NPY by the osteoblast lineage cells, we utilized transgenic mouse models in which we can identify and isolate populations of osteoblasts and osteocytes. The Col2.3GFP transgene is active in osteoblasts and osteocytes, while the DMP1 promoter drives green fluorescent protein (GFP) expression in osteocytes. Real-time PCR analysis of RNA from the isolated populations of cells derived from neonatal calvaria showed higher NPY mRNA in the preosteocytes/osteocytes fraction compared to osteoblasts. NPY immunostaining confirmed the strong expression of NPY in osteocytes (DMP1GFP(+)), and lower levels in osteoblasts. In addition, the presence of NPY receptor Y1 mRNA was detected in cavaria and long bone, as well as in primary calvarial osteoblast cultures, whereas Y2 mRNA was restricted to the brain. Furthermore, NPY expression was reduced by 30-40% in primary calvarial cultures when subjected to fluid shear stress. In addition, treatment of mouse calvarial osteoblasts with exogenous NPY showed a reduction in the levels of intracellular cAMP and markers of osteoblast differentiation (osteocalcin, BSP, and DMP1). These results highlight the potential regulation of osteoblast lineage differentiation by local NPY signaling.
Asunto(s)
Neuropéptido Y/metabolismo , Osteocitos/metabolismo , Animales , Linaje de la Célula/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/efectos de los fármacos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Ratones , Ratones Transgénicos , Neuropéptido Y/genética , Neuropéptido Y/farmacología , Osteocitos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Resistencia al Corte , Cráneo/citología , Cráneo/efectos de los fármacos , Cráneo/metabolismoRESUMEN
The development of a bone mechanically-compatible and osteoinductive scaffold is important for bone tissue engineering applications, particularly for the repair and regeneration of large area critically-sized bone defects. Although previous studies with weight-bearing scaffolds have shown promising results, there is a clear need to develop better osteoinductive strategies for effective scaffold-based bone regeneration. In this study, we designed and fabricated a novel polymer-hydrogel hybrid scaffold system in which a load-bearing polymer matrix and a peptide hydrogel allowed for the synergistic combination of mechanical strength and great potential for osteoinductivity in a single scaffold. The hybrid scaffold system promoted increased pre-osteoblastic cell proliferation. Further, we biotinylated human recombinant bone morphogenetic protein 2 (rhBMP2), and characterized the biotin addition and its effect on rhBMP2 biological activity. The biotinylated rhBMP2 was tethered to the hybrid scaffold using biotin-streptavidin complexation. Controlled release studies demonstrated increased rhBMP2 retention with the tethered rhBMP2 hybrid scaffold group. In vitro evaluation of the hybrid scaffold was performed with rat bone marrow stromal cells and mouse pre-osteoblast cell line MC3T3-E1 cells. Gene expression of alkaline phosphatase (ALP), collagen I (Col I), osteopontin (OPN), bone sialoprotein (BSP), Runx-2 and osteocalcin (OC) increased in MC3T3-E1 cells seeded on the rhBMP2 tethered hybrid scaffolds over the untethered counterparts, demonstrating osteoinductive potential of the hybrid graft. These findings suggest the possibility of developing a novel polymer-hydrogel hybrid system that is weight bearing and osteoinductive for effective bone tissue engineering.
Asunto(s)
Huesos/fisiología , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Polímeros/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Biotinilación/efectos de los fármacos , Proteína Morfogenética Ósea 2/farmacología , Huesos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Ácido Láctico/química , Ácido Láctico/farmacología , Fenómenos Mecánicos/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Péptidos/metabolismo , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Proteínas Recombinantes/farmacología , Coloración y Etiquetado , Factor de Crecimiento Transformador beta/farmacologíaRESUMEN
PURPOSE: Successful repair and regeneration in bone tissue engineering vastly depends on proper interaction between the tissue-engineered construct and the recipient's immune system. In clinical application, adverse responses to bioartificial implants may result in chronic inflammation and loss of the implant. It is known that prolonged inflammation linked to NF-κB inflammatory pathways inhibits bone-forming activity of osteoblast cells. Contributing to orchestrate inflammatory processes, the ligand-activated transcription factor peroxisome proliferator-activated receptor alpha (PPARα) holds inhibitory effects on NF-κB and CEBß activity. Sp1, a widely expressed transcription factor, has been linked to PPAR pathways, cellular homeostasis, and responsiveness to environmental perturbation. Formerly not being characterized, the role of PPARα in inflammatory-mediated bone loss requires further investigation. The aim of the present study was to identify regulatory transcription factor binding sites (TFBS) on the PPAR alpha promoter and to assess the role of Sp1 and associated proteins in its regulation. MATERIALS AND METHODS: In a first set of experiments, polymerase chain reaction assessed the presence of PPARα gene expression in isolated murine bone tissue. Deletion mutagenesis was performed on the human PPARα (hPPARα) promoter gene, and the deletion constructs were transiently transfected to murine osteoblasts to identify important TFBS. PPARα promoter-driven reporter gene expression was monitored in response to overexpression and repression of Sp1 to analyze functional transcription factor recruitment to the PPARα promoter. RESULTS: This study could demonstrate that the full-length hPPARα promoter contains inhibiting promoter regions and that hPPARα basal expression can be significantly increased by deletion mutagensis. Sp1 TFBS proved functional in the regulation of PPARα promoter activity, and the first five Sp1 motifs on the PPARα promoter were sufficient to significantly increase PPARα expression. Additional transient co-transfection experiments could not detect any direct effect of NF-κB/IκB downstream pathway on the regulation of PPARα promoter activity. Taken together, we could demonstrate that Sp1 plays a key role in transcriptional regulation of PPARα promoter activity and gene expression. CONCLUSION: This study provides further insight on Sp1-dependent PPARα regulatory mechanisms and suggests that Sp1-regulated PPARα expression plays a key role in inflammatory mediated bone loss.
Asunto(s)
Resorción Ósea/metabolismo , Osteoblastos/metabolismo , PPAR alfa/metabolismo , Regiones Promotoras Genéticas , Eliminación de Secuencia , Factor de Transcripción Sp1/fisiología , Animales , Sitios de Unión , Resorción Ósea/genética , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , PPAR alfa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , TransfecciónRESUMEN
Orientation of mitotic spindles plays an integral role in determining the relative positions of daughter cells in a tissue. LKB1 is a tumor suppressor that controls cell polarity, metabolism, and microtubule stability. Here, we show that germline LKB1 mutation in mice impairs spindle orientation in cells of the upper gastrointestinal tract and causes dramatic mislocalization of the LKB1 substrate AMPK in mitotic cells. RNAi of LKB1 causes spindle misorientation in three-dimensional MDCK cell cysts. Maintaining proper spindle orientation, possibly mediated by effects on the downstream kinase AMPK, could be an important tumor suppressor function of LKB1.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células Epiteliales/citología , Mutación , Animales , Cadherinas/metabolismo , Colágeno/química , Perros , Combinación de Medicamentos , Genes Supresores de Tumor , Laminina/química , Ratones , Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Mitosis , Proteoglicanos/química , Interferencia de ARN , Huso Acromático , Proteína de la Zonula Occludens-1/metabolismoRESUMEN
Osteocytes represent the most abundant cellular component of mammalian bones with important functions in bone mass maintenance and remodeling. To elucidate the differential gene expression between osteoblasts and osteocytes we completed a comprehensive analysis of their gene profiles. Selective identification of these two mature populations was achieved by utilization of visual markers of bone lineage cells. We have utilized dual GFP reporter mice in which osteocytes are expressing GFP (topaz) directed by the DMP1 promoter, while osteoblasts are identified by expression of GFP (cyan) driven by 2.3 kb of the Col1a1 promoter. Histological analysis of 7-day-old neonatal calvaria confirmed the expression pattern of DMP1GFP in osteocytes and Col2.3 in osteoblasts and osteocytes. To isolate distinct populations of cells we utilized fluorescent activated cell sorting (FACS). Cell suspensions were subjected to RNA extraction, in vitro transcription and labeling of cDNA and gene expression was analyzed using the Illumina WG-6v1 BeadChip. Following normalization of raw data from four biological replicates, 3444 genes were called present in all three sorted cell populations: GFP negative, Col2.3cyan(+) (osteoblasts), and DMP1topaz(+) (preosteocytes and osteocytes). We present the genes that showed in excess of a 2-fold change for gene expression between DMP1topaz(+) and Col2.3cyan(+) cells. The selected genes were classified and grouped according to their associated gene ontology terms. Genes clustered to osteogenesis and skeletal development such as Bmp4, Bmp8a, Dmp1, Enpp1, Phex and Ank were highly expressed in DMP1topaz(+)cells. Most of the genes encoding extracellular matrix components and secreted proteins had lower expression in DMP1topaz(+) cells, while most of the genes encoding plasma membrane proteins were increased. Interestingly a large number of genes associated with muscle development and function and with neuronal phenotype were increased in DMP1topaz(+) cells, indicating some new aspects of osteocyte biology. Although a large number of genes differentially expressed in DMP1topaz(+) and Col2.3cyan(+) cells in our study have already been assigned to bone development and physiology, for most of them we still lack any substantial data. Therefore, isolation of osteocyte and osteoblast cell populations and their subsequent microarray analysis allowed us to identify a number or genes and pathways with potential roles in regulation of bone mass.