Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nucleic Acids Res ; 49(6): 3048-3062, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33660776

RESUMEN

Doxorubicin (DOX) is a common drug in cancer chemotherapy, and its high DNA-binding affinity can be harnessed in preparing DOX-loaded DNA nanostructures for targeted delivery and therapeutics. Although DOX has been widely studied, the existing literature of DOX-loaded DNA-carriers remains limited and incoherent. Here, based on an in-depth spectroscopic analysis, we characterize and optimize the DOX loading into different 2D and 3D scaffolded DNA origami nanostructures (DONs). In our experimental conditions, all DONs show similar DOX binding capacities (one DOX molecule per two to three base pairs), and the binding equilibrium is reached within seconds, remarkably faster than previously acknowledged. To characterize drug release profiles, DON degradation and DOX release from the complexes upon DNase I digestion was studied. For the employed DONs, the relative doses (DOX molecules released per unit time) may vary by two orders of magnitude depending on the DON superstructure. In addition, we identify DOX aggregation mechanisms and spectral changes linked to pH, magnesium, and DOX concentration. These features have been largely ignored in experimenting with DNA nanostructures, but are probably the major sources of the incoherence of the experimental results so far. Therefore, we believe this work can act as a guide to tailoring the release profiles and developing better drug delivery systems based on DNA-carriers.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , ADN/química , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Nanoestructuras/química , Antibióticos Antineoplásicos/química , Tampones (Química) , Desoxirribonucleasa I , Doxorrubicina/química , Liberación de Fármacos , Cloruro de Magnesio
2.
Photochem Photobiol Sci ; 21(11): 1881-1894, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35984631

RESUMEN

Signal transduction typically starts with either ligand binding or cofactor activation, eventually affecting biological activities in the cell. In red light-sensing phytochromes, isomerization of the bilin chromophore results in regulation of the activity of diverse output modules. During this process, several structural elements and chemical events influence signal propagation. In our study, we have studied the full-length bacteriophytochrome from Deinococcus radiodurans as well as a previously generated optogenetic tool where the native histidine kinase output module has been replaced with an adenylate cyclase. We show that the composition of the output module influences the stability of the hairpin extension. The hairpin, often referred as the PHY tongue, is one of the central structural elements for signal transduction. It extends from a distinct domain establishing close contacts with the chromophore binding site. If the coupling between these interactions is disrupted, the dynamic range of the enzymatic regulation is reduced. Our study highlights the complex conformational properties of the hairpin extension as a bidirectional link between the chromophore-binding site and the output module, as well as functional properties of diverse output modules.


Asunto(s)
Deinococcus , Fitocromo , Conformación Proteica , Cristalografía por Rayos X , Fitocromo/química , Sitios de Unión , Luz , Proteínas Bacterianas/química , Deinococcus/química
3.
Photochem Photobiol Sci ; 20(9): 1173-1181, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34460093

RESUMEN

Solvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation state of the biliverdin chromophore from Deinococcus radiodurans bacteriophytchrome, and thus, the pH of the surrounding solution, is determined. The observed absorbance changes are related to the solvent access of the chromophore binding pocket, gated by the hairpin extension. We therefore propose a model with an "open" (solvent-exposed, deprotonation-active on a (sub)second time-scale) state and a "closed" (solvent-gated, deprotonation inactive) state, where the hairpin fluctuates slowly between these conformations thereby controlling the deprotonation process of the chromophore on a minute time scale. When the connection between the hairpin and the biliverdin surroundings is destabilized by a point mutation, the amplitude of the deprotonation phase increases considerably. In the absence of the extension, the chromophore deprotonates essentially without any "gating". Hence, we introduce a straightforward method to study the stability and fluctuation of the phytochrome hairpin in its photostationary state. This approach can be extended to other chromophore-protein systems where absorption changes reflect dynamic processes of the protein.


Asunto(s)
Proteínas Bacterianas/química , Biliverdina/química , Deinococcus/química , Fitocromo/química , Sitios de Unión , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Conformación Proteica , Protones , Solventes , Espectrofotometría Ultravioleta
4.
Phys Chem Chem Phys ; 23(9): 5615-5628, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33656023

RESUMEN

Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific events in a red-light sensing phytochrome using the unnatural amino acid azidophenylalanine, vibrationally distinguishable from all other protein signals. In canonical phytochromes, signal transduction starts with isomerization of an excited bilin chromophore, initiating a multitude of processes in the photosensory unit of the protein, which eventually control the biochemical activity of the output domain, nanometers away from the chromophore. By implementing the label in prime protein locations and running two-color step-scan FTIR spectroscopy on the Deinococcus radiodurans bacteriophytochrome, we track the signal propagation at three specific sites in the photosensory unit. We show that a structurally switchable hairpin extension, a so-called tongue region, responds to the photoconversion already in microseconds and finalizes its structural changes concomitant with the chromophore, in milliseconds. In contrast, kinetics from the other two label positions indicate that the site-specific changes deviate from the chromophore actions, even though the labels locate in the chromophore vicinity. Several other sites for labeling resulted in impaired photoswitching, low structural stability, or no changes in the difference spectrum, which provides additional information on the inner dynamics of the photosensory unit. Our work enlightens the multidimensionality of the structural changes of proteins under action. The study also shows that the signaling mechanism of phytochromes is accessible in a time-resolved and site-specific approach by azido probes and demonstrates challenges in using these labels.


Asunto(s)
Azidas/química , Proteínas Bacterianas/química , Fenilalanina/análogos & derivados , Fitocromo/química , Secuencia de Aminoácidos , Aminoácidos/química , Sitios de Unión , Cinética , Modelos Moleculares , Fenilalanina/química , Procesos Fotoquímicos , Unión Proteica , Conformación Proteica , Transducción de Señal , Espectroscopía Infrarroja por Transformada de Fourier , Coloración y Etiquetado
5.
Biophys J ; 118(2): 415-421, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31839260

RESUMEN

Phytochromes sense red/far-red light and control many biological processes in plants, fungi, and bacteria. Although the crystal structures of dark- and light-adapted states have been determined, the molecular mechanisms underlying photoactivation remain elusive. Here, we demonstrate that the conserved tongue region of the PHY domain of a 57-kDa photosensory module of Deinococcus radiodurans phytochrome changes from a structurally heterogeneous dark state to an ordered, light-activated state. The results were obtained in solution by utilizing a laser-triggered activation approach detected on the atomic level with high-resolution protein NMR spectroscopy. The data suggest that photosignaling of phytochromes relies on careful modulation of structural heterogeneity of the PHY tongue.


Asunto(s)
Luz , Fitocromo/química , Oscuridad , Deinococcus , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fitocromo/metabolismo , Dominios Proteicos
6.
Photochem Photobiol Sci ; 19(11): 1488-1510, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33107538

RESUMEN

Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.


Asunto(s)
Proteínas Bacterianas/química , Fitocromo/química , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Procesos Fotoquímicos , Fitocromo/metabolismo , Conformación Proteica , Transducción de Señal
7.
Phys Chem Chem Phys ; 22(17): 9195-9203, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32149285

RESUMEN

Phytochromes are photosensory proteins in plants, fungi, and bacteria, which detect red- and far-red light. They undergo a transition between the resting (Pr) and photoactivated (Pfr) states. In bacterial phytochromes, the Pr-to-Pfr transition is facilitated by two intermediate states, called Lumi-R and Meta-R. The molecular structures of the protein in these states are not known and the molecular mechanism of photoconversion is not understood. Here, we apply transient infrared absorption spectroscopy to study the photocycle of the wild-type and Y263F mutant of the phytochrome from Deinococcus radiodurans (DrBphP) from nano- to milliseconds. We identify two sequentially forming Lumi-R states which differ in the local structure surrounding the carbonyl group of the biliverdin D-ring. We also find that the tyrosine at position 263 alters local structure and dynamics around the D-ring and causes an increased rate of Pfr formation. The results shed new light on the mechanism of light-signalling in phytochrome proteins.


Asunto(s)
Deinococcus/química , Deinococcus/genética , Modelos Moleculares , Fitocromo/química , Espectrofotometría Infrarroja , Proteínas Bacterianas/química , Fototransducción/genética , Mutación , Estructura Terciaria de Proteína
8.
Nature ; 509(7499): 245-248, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24776794

RESUMEN

Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light-sensing kinases that control diverse cellular functions in plants, bacteria and fungi. Bacterial phytochromes consist of a photosensory core and a carboxy-terminal regulatory domain. Structures of photosensory cores are reported in the resting state and conformational responses to light activation have been proposed in the vicinity of the chromophore. However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here we report crystal and solution structures of the resting and activated states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures show an open and closed form of the dimeric protein for the activated and resting states, respectively. This nanometre-scale rearrangement is controlled by refolding of an evolutionarily conserved 'tongue', which is in contact with the chromophore. The findings reveal an unusual mechanism in which atomic-scale conformational changes around the chromophore are first amplified into an ångstrom-scale distance change in the tongue, and further grow into a nanometre-scale conformational signal. The structural mechanism is a blueprint for understanding how phytochromes connect to the cellular signalling network.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Deinococcus/química , Fototransducción , Proteínas Bacterianas/efectos de la radiación , Sitios de Unión , Cristalografía por Rayos X , Fototransducción/efectos de la radiación , Modelos Moleculares , Fitocromo/química , Fitocromo/metabolismo , Fitocromo/efectos de la radiación , Conformación Proteica/efectos de la radiación
9.
J Biol Chem ; 293(21): 8161-8172, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29622676

RESUMEN

Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with the chromophore by substituting the conserved tyrosine (Tyr263) in the phytochrome from the extremophile bacterium Deinococcus radiodurans with phenylalanine. Using optical and FTIR spectroscopy, X-ray solution scattering, and crystallography of chromophore-binding domain (CBD) and CBD-PHY fragments, we show that the absence of the Tyr263 hydroxyl destabilizes the ß-sheet conformation of the tongue. This allowed the phytochrome to adopt an α-helical tongue conformation regardless of the chromophore state, hence distorting the activity state of the protein. Our crystal structures further revealed that water interactions are missing in the Y263F mutant, correlating with a decrease of the photoconversion yield and underpinning the functional role of Tyr263 in phytochrome conformational changes. We propose a model in which isomerization of the chromophore, refolding of the tongue, and globular conformational changes are represented as weakly coupled equilibria. The results also suggest that the phytochromes have several redundant signaling routes.


Asunto(s)
Proteínas Bacterianas/química , Deinococcus/metabolismo , Fenilalanina/química , Fitocromo/química , Conformación Proteica , Tirosina/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Fenilalanina/metabolismo , Fitocromo/metabolismo , Transducción de Señal , Tirosina/metabolismo
10.
J Am Chem Soc ; 140(39): 12396-12404, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30183281

RESUMEN

Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling domains of the protein. However, the structural changes are elusive, and therefore the molecular mechanism of signal transduction remains poorly understood. Here, we apply two-color step-scan infrared spectroscopy to the bacteriophytochrome from Deinococcus radiodurans. We show by recordings in H2O and D2O that the hydrogen bonds to the biliverdin D-ring carbonyl become disordered in the first intermediate (Lumi-R) forming a dynamic microenvironment, then completely detach in the second intermediate (Meta-R), and finally reform in the signaling state (Pfr). The spectra reveal via isotope labeling that the refolding of the conserved "PHY-tongue" region occurs with the last transition between Meta-R and Pfr. Additional changes in the protein backbone are detected already within microseconds in Lumi-R. Aided by molecular dynamics simulations, we find that a strictly conserved salt bridge between an arginine of the PHY tongue and an aspartate of the chromophore binding domains is broken in Lumi-R and the arginine is recruited to the D-ring C═O. This rationalizes how isomerization of the chromophore is linked to the global structural rearrangement in the sensory receptor. Our findings advance the structural understanding of phytochrome photoactivation.


Asunto(s)
Biliverdina/química , Deinococcus/química , Fitocromo/química , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biliverdina/metabolismo , Deinococcus/metabolismo , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Procesos Fotoquímicos , Fitocromo/metabolismo , Conformación Proteica en Lámina beta , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
11.
Phys Chem Chem Phys ; 20(27): 18216-18225, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29938729

RESUMEN

Phytochrome proteins translate light into biochemical signals in plants, fungi and microorganisms. Light cues are absorbed by a bilin chromophore, leading to an isomerization and a rotation of the D-ring. This relays the signal to the protein matrix. A set of amino acids, which is conserved across the phytochrome superfamily, holds the chromophore in the binding pocket. However, the functional role of many of these amino acids is not yet understood. Here, we investigate the hydrogen bonding network which surrounds the D-ring of the chromophore in the resting (Pr) state. We use UV/vis spectroscopy, infrared absorption spectroscopy and X-ray crystallography to compare the photosensory domains from Deinococcus radiodurans, the phytochrome 1 from Stigmatella aurantiaca, and a D. radiodurans H290T mutant. In the latter two, an otherwise conserved histidine next to the D-ring is replaced by a threonine. Our infrared absorption data indicate that the carbonyl of the D-ring is more strongly coordinated by hydrogen bonds when the histidine is missing. This is in apparent contrast with the crystal structure of the PAS-GAF domain of phytochrome 1 from S. aurantiaca (pdb code 4RPW), which did not resolve any obvious binding partners for the D-ring carbonyl. We present a new crystal structure of the H290T mutant of the PAS-GAF from D. radiodurans phytochrome. The 1.4 Å-resolution structure reveals additional water molecules, which fill the void created by the mutation. Two of the waters are significantly disordered, suggesting that flexibility might be important for the photoconversion. Finally, we report a spectral analysis which quantitatively explains why the histidine-less phytochromes do not reach equal Pfr-type absorption in the photoequilibrium compared to the Deinococcus radiodurans wild-type protein. The study highlights the importance of water molecules and the hydrogen bonding network around the chromophore for controlling the isomerization reaction and spectral properties of phytochromes.


Asunto(s)
Proteínas Bacterianas/química , Biliverdina/química , Fitocromo/química , Sitios de Unión , Deinococcus/química , Enlace de Hidrógeno , Modelos Moleculares , Procesos Fotoquímicos , Unión Proteica , Conformación Proteica , Proteobacteria/química
12.
J Biol Chem ; 290(26): 16383-92, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25971964

RESUMEN

Phytochromes are dimeric photoreceptor proteins that sense red light levels in plants, fungi, and bacteria. The proteins are structurally divided into a light-sensing photosensory module consisting of PAS, GAF, and PHY domains and a signaling output module, which in bacteriophytochromes typically is a histidine kinase (HK) domain. Existing structural data suggest that two dimerization interfaces exist between the GAF and HK domains, but their functional roles remain unclear. Using mutational, biochemical, and computational analyses of the Deinococcus radiodurans phytochrome, we demonstrate that two dimerization interfaces between sister GAF and HK domains stabilize the dimer with approximately equal contributions. The existence of both dimerization interfaces is critical for thermal reversion back to the resting state. We also find that a mutant in which the interactions between the GAF domains were removed monomerizes under red light. This implies that the interactions between the HK domains are significantly altered by photoconversion. The results suggest functional importance of the dimerization interfaces in bacteriophytochromes.


Asunto(s)
Proteínas Bacterianas/química , Deinococcus/metabolismo , Deinococcus/efectos de la radiación , Fitocromo/química , Fitocromo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Deinococcus/química , Deinococcus/enzimología , Dimerización , Histidina Quinasa , Luz , Fitocromo/genética , Conformación Proteica/efectos de la radiación , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína
13.
J Virol ; 89(15): 7593-603, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972558

RESUMEN

UNLABELLED: Thermus thermophilus bacteriophage P23-77 is the type member of a new virus family of icosahedral, tailless, inner-membrane-containing double-stranded DNA (dsDNA) viruses infecting thermophilic bacteria and halophilic archaea. The viruses have a unique capsid architecture consisting of two major capsid proteins assembled in various building blocks. We analyzed the function of the minor capsid protein VP11, which is the third known capsid component in bacteriophage P23-77. Our findings show that VP11 is a dynamically elongated dimer with a predominantly α-helical secondary structure and high thermal stability. The high proportion of basic amino acids in the protein enables electrostatic interaction with negatively charged molecules, including nucleic acid and large unilamellar lipid vesicles (LUVs). The plausible biological function of VP11 is elucidated by demonstrating the interactions of VP11 with Thermus-derived LUVs and with the major capsid proteins by means of the dynamic-light-scattering technique. In particular, the major capsid protein VP17 was able to link VP11-complexed LUVs into larger particles, whereas the other P23-77 major capsid protein, VP16, was unable to link VP11-comlexed LUVs. Our results rule out a previously suggested penton function for VP11. Instead, the electrostatic membrane association of VP11 triggers the binding of the major capsid protein VP17, thus facilitating a controlled incorporation of the two different major protein species into the assembling capsid. IMPORTANCE: The study of thermophilic viruses with inner membranes provides valuable insights into the mechanisms used for stabilization and assembly of protein-lipid systems at high temperatures. Our results reveal a novel way by which an internal membrane and outer capsid shell are linked in a virus that uses two different major protein species for capsid assembly. We show that a positive protein charge is important in order to form electrostatic interactions with the lipid surface, thereby facilitating the incorporation of other capsid proteins on the membrane surface. This implies an alternative function for basic proteins present in the virions of other lipid-containing thermophilic viruses, whose proposed role in genome packaging is based on their capability to bind DNA. The unique minor capsid protein of bacteriophage P23-77 resembles in its characteristics the scaffolding proteins of tailed phages, though it constitutes a substantial part of the mature virion.


Asunto(s)
Bacteriófagos/metabolismo , Proteínas de la Cápside/metabolismo , Lípidos/química , Thermus/metabolismo , Ensamble de Virus , Secuencia de Aminoácidos , Bacteriófagos/química , Bacteriófagos/genética , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Metabolismo de los Lípidos , Modelos Moleculares , Datos de Secuencia Molecular , Electricidad Estática , Thermus/química , Thermus/virología , Virión/química , Virión/genética , Virión/metabolismo
14.
Biophys J ; 108(2): 261-71, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25606675

RESUMEN

State transitions in the green alga Chlamydomonas reinhardtii serve to balance excitation energy transfer to photosystem I (PSI) and to photosystem II (PSII) and possibly play a role as a photoprotective mechanism. Thus, light-harvesting complex II (LHCII) can switch between the photosystems consequently transferring more excitation energy to PSII (state 1) or to PSI (state 2) or can end up in LHCII-only domains. In this study, low-temperature (77 K) steady-state and time-resolved fluorescence measured on intact cells of Chlamydomonas reinhardtii shows that independently of the state excitation energy transfer from LHCII to PSI or to PSII occurs on two main timescales of <15 ps and ∼ 100 ps. Moreover, in state 1 almost all LHCIIs are functionally connected to PSII, whereas the transition from state 1 to a state 2 chemically locked by 0.1 M sodium fluoride leads to an almost complete functional release of LHCIIs from PSII. About 2/3 of the released LHCIIs transfer energy to PSI and ∼ 1/3 of the released LHCIIs form a component designated X-685 peaking at 685 nm that decays with time constants of 0.28 and 5.8 ns and does not transfer energy to PSI or to PSII. A less complete state 2 was obtained in cells incubated under anaerobic conditions without chemical locking. In this state about half of all LHCIIs remained functionally connected to PSII, whereas the remaining half became functionally connected to PSI or formed X-685 in similar amounts as with chemical locking. We demonstrate that X-685 originates from LHCII domains not connected to a photosystem and that its presence introduces a change in the interpretation of 77 K steady-state fluorescence emission measured upon state transitions in Chalamydomonas reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
15.
J Biol Chem ; 289(46): 32144-32152, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25253687

RESUMEN

Use of fluorescent proteins to study in vivo processes in mammals requires near-infrared (NIR) biomarkers that exploit the ability of light in this range to penetrate tissue. Bacteriophytochromes (BphPs) are photoreceptors that couple absorbance of NIR light to photoisomerization, protein conformational changes, and signal transduction. BphPs have been engineered to form NIR fluorophores, including IFP1.4, Wi-Phy, and the iRFP series, initially by replacement of Asp-207 by His. This position was suggestive because its main chain carbonyl is within hydrogen-bonding distance to pyrrole ring nitrogens of the biliverdin chromophore, thus potentially functioning as a crucial transient proton sink during photoconversion. To explain the origin of fluorescence in these phytofluors, we solved the crystal structures of IFP1.4 and a comparison non-fluorescent monomeric phytochrome DrCBDmon. Met-186 and Val-288 in IFP1.4 are responsible for the formation of a tightly packed hydrophobic hub around the biliverdin D ring. Met-186 is also largely responsible for the blue-shifted IFP1.4 excitation maximum relative to the parent BphP. The structure of IFP1.4 revealed decreased structural heterogeneity and a contraction of two surface regions as direct consequences of side chain substitutions. Unexpectedly, IFP1.4 with Asp-207 reinstalled (IFPrev) has a higher fluorescence quantum yield (∼9%) than most NIR phytofluors published to date. In agreement, fluorescence lifetime measurements confirm the exceptionally long excited state lifetimes, up to 815 ps, in IFP1.4 and IFPrev. Our research helps delineate the origin of fluorescence in engineered BphPs and will facilitate the wide-spread adoption of phytofluors as biomarkers.


Asunto(s)
Bacterias/enzimología , Fitocromo/química , Animales , Biliverdina/química , Biomarcadores/química , Clonación Molecular , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Nitrógeno/química , Unión Proteica , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia , Espectrofotometría , Espectroscopía Infrarroja Corta , Propiedades de Superficie , Agua/química
16.
J Virol ; 88(15): 8504-13, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24850734

RESUMEN

UNLABELLED: In recent decades, Raman spectroscopy has entered the biological and medical fields. It enables nondestructive analysis of structural details at the molecular level and has been used to study viruses and their constituents. Here, we used Raman spectroscopy to study echovirus 1 (EV1), a small, nonenveloped human pathogen, in two different uncoating states induced by heat treatments. Raman signals of capsid proteins and RNA genome were observed from the intact virus, the uncoating intermediate, and disrupted virions. Transmission electron microscopy data revealed general structural changes between the studied particles. Compared to spectral characteristics of proteins in the intact virion, those of the proteins of the heat-treated particles indicated reduced α-helix content with respect to ß-sheets and coil structures. Changes observed in tryptophan and tyrosine signals suggest an increasingly hydrophilic environment around these residues. RNA signals revealed a change in the environment of the genome and in its conformation. The ionized-carbonyl vibrations showed small changes between the intact virion and the uncoating intermediate, which points to cleavage of salt bridges in the protein structure during the uncoating process. In conclusion, our data reveal distinguishable Raman signatures of the intact, intermediate, and disrupted EV1 particles. These changes indicate structural, chemical, and solute-solvent alterations in the genome and in the capsid proteins and lay the essential groundwork for investigating the uncoating of EV1 and related viruses in real time. IMPORTANCE: In order to combat virus infection, we need to know the details of virus uncoating. We present here the novel Raman signatures for opened and intact echovirus 1. This gives hope that the signatures may be used in the near future to evaluate the ambient conditions in endosomes leading to virus uncoating using, e.g., coherent anti-Stokes Raman spectroscopy (CARS) imaging. These studies will complement structural studies on virus uncoating. In addition, Raman/CARS imaging offers the possibility of making dynamic live measurements in vitro and in cells which are impossible to measure by, for example, cryo-electron tomography. Furthermore, as viral Raman spectra can be overwhelmed with various contaminants, our study is highly relevant in demonstrating the importance of sample preparation for Raman spectroscopy in the field of virology.


Asunto(s)
Enterovirus Humano B/química , Enterovirus Humano B/fisiología , ARN Viral/análisis , Espectrometría Raman , Proteínas Virales/análisis , Desencapsidación Viral , Animales , Chlorocebus aethiops , Enterovirus Humano B/efectos de la radiación , Enterovirus Humano B/ultraestructura , Calor , Microscopía Electrónica de Transmisión , Células Vero , Virión/química , Virión/ultraestructura
17.
Angew Chem Int Ed Engl ; 54(51): 15462-7, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26530790

RESUMEN

Large, non-symmetrical, inherently chiral bispyridyl ligand L derived from natural ursodeoxycholic bile acid was used for square-planar coordination of tetravalent Pd(II) , yielding the cationic single enantiomer of superchiral coordination complex 1 Pd3 L6 containing 60 well-defined chiral centers in its flower-like structure. Complex 1 can readily be transformed by addition of chloride into a smaller enantiomerically pure cyclic trimer 2 Pd3 L3 Cl6 containing 30 chiral centers. This transformation is reversible and can be restored by the addition of silver cations. Furthermore, a mixture of two constitutional isomers of trimer, 2 and 2', and dimer, 3 and 3', can be obtained directly from L by its coordination to trans- or cis-N-pyridyl-coordinating Pd(II) . These intriguing, water-resistant, stable supramolecular assemblies have been thoroughly described by (1) H DOSY NMR, mass spectrometry, circular dichroism, molecular modelling, and drift tube ion-mobility mass spectrometry.

18.
Biochemistry ; 53(45): 7076-85, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25337904

RESUMEN

Phytochromes consist of several protein domains and a linear tetrapyrrole molecule, which interact as a red-light-sensing system. In this study, size-exclusion chromatography and light-scattering techniques are combined with UV-vis spectroscopy to investigate light-induced changes in dimeric Deinococcus radiodurans bacterial phytochrome (DrBphP) and its subdomains. The photosensory unit (DrCBD-PHY) shows an unusually stable Pfr state with minimal dark reversion, whereas the histidine kinase (HK) domain facilitates dark reversion to the resting state. Size-exclusion chromatography reveals that all phytochrome fragments remain as dimers in the illuminated state and dark state. Still, the elution profiles of all phytochrome fragments differ between the illuminated and dark states. The differences are observed reliably only when the whole UV-vis spectrum is characterized along the elution profile and show more Pfr-state characteristics at later elution volumes in DrBphP and DrCBD-PHY fragments. This implies that the PHY domain has an important role in amplifying and relaying light-induced conformational changes to the HK domain. In the illuminated state, the HK domain appears partially unfolded and prone to form oligomers. The oligomerization of DrBphP can be diminished by converting the molecule back to the resting Pr state by using far-red light.


Asunto(s)
Deinococcus/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fitocromo/análisis , Conformación Proteica , Estructura Terciaria de Proteína , Espectrofotometría Ultravioleta/métodos
19.
J Mol Biol ; 436(5): 168412, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135178

RESUMEN

For microbes and their hosts, sensing of external cues is essential for their survival. For example, in the case of plant associated microbes, the light absorbing pigment composition of the plant as well as the ambient light conditions determine the well-being of the microbe. In addition to light sensing, some microbes can utilize xanthorhodopsin based proton pumps and bacterial photosynthetic complexes that work in parallel for energy production. They are called dual phototrophic systems. Light sensing requirements in these type of systems are obviously demanding. In nature, the photosensing machinery follows mainly the same composition in all organisms. However, the specific role of each photosensor in specific light conditions is elusive. In this study, we provide an overall picture of photosensors present in dual phototrophic systems. We compare the genomes of the photosensor proteins from dual phototrophs to those from similar microbes with "single" phototrophicity or microbes without phototrophicity. We find that the dual phototrophic bacteria obtain a larger variety of photosensors than their light inactive counterparts. Their rich domain composition and functional repertoire remains similar across all microbial photosensors. Our study calls further investigations of this particular group of bacteria. This includes protein specific biophysical characterization in vitro, microbiological studies, as well as clarification of the ecological meaning of their host microbial interactions.


Asunto(s)
Proteínas Bacterianas , Fotorreceptores Microbianos , Fotosíntesis , Sphingomonas , Genómica , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Sphingomonas/genética , Sphingomonas/fisiología , Genes Bacterianos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética
20.
PLoS One ; 19(5): e0287088, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771771

RESUMEN

A variety of costly research-grade imaging devices are available for the detection of spectroscopic features. Here we present an affordable, open-source and versatile device, suitable for a range of applications. We provide the files to print the imaging chamber with commonly available 3D printers and instructions to assemble it with easily available hardware. The imager is suitable for rapid sample screening in research, as well as for educational purposes. We provide details and results for an already proven set-up which suits the needs of a research group and students interested in UV-induced near-infrared fluorescence detection of microbial colonies grown on Petri dishes. The fluorescence signal confirms the presence of bacteriochlorophyll a in aerobic anoxygenic phototrophic bacteria (AAPB). The imager allows for the rapid detection and subsequent isolation of AAPB colonies on Petri dishes with diverse environmental samples. To this date, 15 devices have been build and more than 7000 Petri dishes have been analyzed for AAPB, leading to over 1000 new AAPB isolates. Parts can be modified depending on needs and budget. The latest version with automated switches and double band pass filters costs around 350€ in materials and resolves bacterial colonies with diameters of 0.5 mm and larger. The low cost and modular build allow for the integration in high school classes to educate students on light properties, fluorescence and microbiology. Computer-aided design of 3D-printed parts and programming of the employed Raspberry Pi computer could be incorporated in computer sciences classes. Students have been also inspired to do agar art with microbes. The device is currently used in seven different high schools in Finland. Additionally, a science education network of Finnish universities has incorporated it in its program for high school students. Video guides have been produced to facilitate easy operation and accessibility of the device.


Asunto(s)
Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/métodos , Fluorescencia , Procesos Fototróficos , Imagen Óptica/métodos , Imagen Óptica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA