Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Psychiatry ; 29(4): 1020-1032, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200291

RESUMEN

Genes restricted to humans may contribute to human-specific traits and provide a different context for diseases. CHRFAM7A is a uniquely human fusion gene and a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR). The α7 nAChR has been a promising target for diseases affecting cognition and higher cortical functions, however, the treatment effect observed in animal models failed to translate into human clinical trials. As CHRFAM7A was not accounted for in preclinical drug screens it may have contributed to the translational gap. Understanding the complex genetic architecture of the locus, deciphering the functional impact of CHRFAM7A on α7 nAChR neurobiology and utilizing human-relevant models may offer novel approaches to explore α7 nAChR as a drug target.


Asunto(s)
Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Investigación Biomédica Traslacional/métodos
2.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352944

RESUMEN

Neuroinflammation in Alzheimer's disease (AD) has been the focus for identifying targetable pathways for drug development. The role of amyloid beta (Aß), a prototype of damage-associated molecular patterns (DAMPs), has been implicated in triggering an inflammatory response. As alpha7 nicotinic acetylcholine receptor (α7 nAChR) binds Aß with high affinity, α7 nAChR may play a role in Aß-induced neuroinflammation. The conundrum of how α7 nAChR as the mediator of the cholinergic anti-inflammatory response may trigger an inflammatory response has not been resolved. CHRFAM7A, the uniquely human fusion gene between ULK4 and CHRNA7, is a negative regulator of α7 nAChR ionotropic function. To provide the human context, isogenic induced pluripotent stem cell (iPSC) lines were developed from CHRFAM7A null and carrier individuals by genome-editing the null line using TALENs to knock-in CHRFAM7A. In iPSC-derived microglia-like cells, CHRFAM7A mitigated Aß uptake through the α7 nAChR. Despite the lower Aß uptake, the presence of CHRFAM7A was associated with an innate immune response that was characterized by NF-κB activation and NF-κB target transcription (TNFA, IL6, and IL1B). LPS, a prototype PAMP, induced a heightened immune response in CHRFAM7A carriers. CHRFAM7A modified the dynamics of NF-κB translocation by prolonging its nuclear presence. CHRFAM7A modified the α7 nAChR metabotropic function, resulting in a human-specific innate immune response. This iPSC model provided an opportunity to elucidate the mechanism and establish high throughput screens.


Asunto(s)
Alarminas/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Células Madre Pluripotentes Inducidas/citología , Microglía/inmunología , Microglía/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Enfermedad de Alzheimer/patología , Movimiento Celular , Susceptibilidad a Enfermedades , Expresión Génica , Humanos , Inmunidad Innata , Vigilancia Inmunológica , Microglía/citología , FN-kappa B/metabolismo , Transducción de Señal , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
3.
BMC Cell Biol ; 15: 8, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24618359

RESUMEN

BACKGROUND: Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus and is implicated in a variety of processes in both compartments. We recently identified a novel isoform of myosin IC and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C) that differ only in the addition of short isoform-specific N-terminal peptides. The expression pattern of the isoforms and the mechanisms of expression regulation remain unknown. RESULTS: To determine the expression patterns of myosin IC isoforms, we performed a comprehensive expression analysis of the two myosin IC isoforms (isoform A and B) that contain isoform-specific sequences. By immunoblotting with isoform-specific antibodies and by qRT-PCR with isoform-specific primer we demonstrate that myosin IC isoforms A and B have distinct expression patterns in mouse tissues. Specifically, we show that myosin IC isoform A is expressed in a tissue specific pattern, while myosin IC isoform B is ubiquitously expressed at comparable levels in mouse tissues. CONCLUSIONS: The differences in the expression profile of the myosin IC isoforms indicate a tissue-specific MYOIC gene regulation and further suggest that the myosin IC isoforms, despite their high sequence homology, might have tissue-specific and isoform-specific functions.


Asunto(s)
Regulación de la Expresión Génica , Miosinas/genética , Miosinas/metabolismo , Animales , Western Blotting , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Exp Cell Res ; 319(8): 1111-23, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23438938

RESUMEN

Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms.


Asunto(s)
Nucléolo Celular/metabolismo , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Señales de Clasificación de Proteína/genética , Animales , Células COS , Chlorocebus aethiops , Clonación Molecular , Humanos , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Miosina Tipo I/química , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/genética , Especificidad por Sustrato , Transfección
5.
EBioMedicine ; 103: 105093, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569318

RESUMEN

BACKGROUND: Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca2+ conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored. METHODS: Two model systems are used, human induced pluripotent stem cells (iPSC) and human primary monocytes, to characterize α7 nAChR function, Ca2+ dynamics and decoders to elucidate the pathway from receptor to phenotype. FINDINGS: CHRFAM7A/α7 nAChR is identified as a hypomorphic receptor with mitigated Ca2+ influx and prolonged channel closed state. This shifts the Ca2+ reservoir from the extracellular space to the endoplasmic reticulum (ER) leading to Ca2+ dynamic changes. Ca2+ decoder small GTPase Rac1 is then activated, reorganizing the actin cytoskeleton. Observed actin mediated phenotypes include cellular adhesion, motility, phagocytosis and tissue mechanosensation. INTERPRETATION: CHRFAM7A introduces an additional, human specific, layer to Ca2+ regulation leading to an innate immune gain of function. Through the actin cytoskeleton it drives adaptation to the mechanical properties of the tissue environment leading to an ability to invade previously immune restricted niches. Human genetic diversity predicts profound translational significance as its understanding builds the foundation for successful treatments for infectious diseases, sepsis, and cancer metastasis. FUNDING: This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti) and in part by NIH grant R01HL163168 (Yongho Bae).


Asunto(s)
Citoesqueleto de Actina , Señalización del Calcio , Células Madre Pluripotentes Inducidas , Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Citoesqueleto de Actina/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Calcio/metabolismo , Inmunidad Innata , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Monocitos/metabolismo , Fagocitosis , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética
6.
EBioMedicine ; 95: 104725, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37517100

RESUMEN

BACKGROUND: While advancements in imaging techniques have led to major strides in deciphering the human brain, successful interventions are elusive and represent some of the most persistent translational gaps in medicine. Human restricted CHRFAM7A has been associated with neuropsychiatric disorders. METHODS: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples. The emerging pathways and mechanistic hypotheses are tested and validated in an isogenic hiPSC model of CHRFAM7A knock-in medial ganglionic eminence progenitors and neurons. FINDINGS: CHRFAM7A is identified as a modulator of intracellular calcium dynamics and an upstream regulator of Rac1. Rac1 activation re-designs the actin cytoskeleton leading to dynamic actin driven remodeling of membrane protrusion and a switch from filopodia to lamellipodia. The reinforced cytoskeleton leads to an advantage to tolerate stiffer mechanical properties of the extracellular environment. INTERPRETATION: CHRFAM7A modifies the actin cytoskeleton to a more dynamic and stiffness resistant state in an α7nAChR dependent manner. CHRFAM7A may facilitate neuronal adaptation to changes in the brain environment in physiological and pathological conditions contributing to risk or recovery. Understanding how CHRFAM7A affects human brain requires human studies in the areas of memory formation and erasure, cognitive reserve, and neuronal plasticity. FUNDING: This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti). Also, in part by the International Society for Neurochemistry (ISN) and The Company of Biologists (Nicolas Rosas). ROSMAP is supported by NIA grants P30AG10161, P30AG72975, R01AG15819, R01AG17917. U01AG46152, and U01AG61356.


Asunto(s)
Encéfalo , Mutación con Ganancia de Función , Humanos , Encéfalo/metabolismo , Neuronas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo
7.
Biol Reprod ; 82(6): 1112-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20164440

RESUMEN

Transcriptional coactivator with PDZ-binding motif (TAZ) is known to bind to a variety of transcription factors to control cell differentiation and organ development. However, its role in uterine physiology has not yet been described. To study its regulation during the unique process of differentiation of fibroblasts into decidual cells (decidualization), we utilized the human uterine fibroblast (HuF) in vitro cell model. Immunocytochemistry data demonstrated that the majority of the TAZ protein is localized in the nucleus. Treatment of HuF cells with the embryonic stimulus cytokine interleukin 1 beta in the presence of steroid hormones (estradiol-17 beta and medroxyprogesterone acetate) for 13 days did not cause any apparent TAZ mRNA changes but resulted in a significant TAZ protein decline (approximately 62%) in total cell lysates. Analysis of cytosolic and nuclear extracts revealed that the decline of total TAZ was caused primarily by a drop of TAZ protein levels in the nucleus. TAZ was localized on the peroxisome proliferator-activated receptor response element site (located at position -1200 bp relative to the transcription start site) of the genomic region of decidualization marker insulin-like growth factor-binding protein 1 (IGFBP1) in HuF cells as detected by chromatin immunoprecipitation. TAZ is also present in human endometrium tissue as confirmed by immunohistochemistry. During the secretory phase of the menstrual cycle, specific TAZ staining particularly diminishes in the stroma, suggesting its participation during the decidualization process, as well as implantation. During early baboon pregnancy, TAZ protein expression remains minimal in the endometrium close to the implantation site. In summary, the presented evidence shows for the first time to date TAZ protein in the human uterine tract, its downregulation during in vitro decidualization, and its localization on the IGFBP1 promoter region, all of which indicate its presence in the uterine differentiation program during pregnancy.


Asunto(s)
Diferenciación Celular , Decidua/citología , Decidua/crecimiento & desarrollo , Fibroblastos/citología , Dominios PDZ , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Decidua/efectos de los fármacos , Regulación hacia Abajo , Implantación del Embrión , Estradiol/administración & dosificación , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Interleucina-1beta/administración & dosificación , Medroxiprogesterona/administración & dosificación , Papio , Receptores Activados del Proliferador del Peroxisoma/genética , Embarazo , Factores de Transcripción/análisis , Factores de Transcripción/genética
8.
EBioMedicine ; 59: 102892, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32818803

RESUMEN

BACKGROUND: Cholinergic neuronal loss is one of the hallmarks of AD related neurodegeneration; however, preclinical promise of α7 nAChR drugs failed to translate into humans. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of α7 nAChR and was unaccounted for in preclinical models. METHODS: Molecular methods: Function of CHRFAM7A alleles was studied in vitro in two disease relevant phenotypic readouts: electrophysiology and Aß uptake. Genome edited human induced pluripotent stem cells (iPSC) were used as a model system with the human context. Double blind pharmacogenetic study: We performed double-blind pharmacogenetic analysis on the effect of AChEI therapy based on CHRFAM7A carrier status in two paradigms: response to drug initiation and DMT effect. Mini Mental Status Examination (MMSE) was used as outcome measure. Change in MMSE score from baseline was compared by 2-tailed T-test. Longitudinal analysis of clinical outcome (MMSE) was performed using a fitted general linear model, based on an assumed autoregressive covariance structure. Model independent variables included age, sex, and medication regimen at the time of the first utilized outcome measure (AChEI alone or AChEI plus memantine), APOE4 carrier status (0, 1 or 2 alleles as categorical variables) and CHRFAM7A genotype. FINDINGS: The direct and inverted alleles have distinct phenotypes. Functional CHRFAM7A allele classifies the population as 25% non-carriers and 75% carriers. Induced pluripotent stem cell (iPSC) models α7 nAChR mediated Aß neurotoxicity. Pharmacological readout translates into both first exposure (p = 0.037) and disease modifying effect (p = 0.0048) in two double blind pharmacogenetic studies. INTERPRETATION: CHRFAM7A accounts for the translational gap in cholinergic strategies in AD. Clinical trials not accounting for this uniquely human genetic factor may have rejected drug candidates that would benefit 25% of AD. Reanalyses of the completed trials using this pharmacogenetic paradigm may identify effective therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Neuronas Colinérgicas/metabolismo , Proteínas Recombinantes de Fusión , Receptor Nicotínico de Acetilcolina alfa 7/genética , Alelos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/metabolismo , Biomarcadores , Línea Celular , Antagonistas Colinérgicos/farmacología , Antagonistas Colinérgicos/uso terapéutico , Evaluación Preclínica de Medicamentos , Técnica del Anticuerpo Fluorescente , Dosificación de Gen , Frecuencia de los Genes , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fenotipo , Transmisión Sináptica , Investigación Biomédica Traslacional , Resultado del Tratamiento , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
9.
Transl Psychiatry ; 9(1): 59, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710073

RESUMEN

The α7 nicotinic acetylcholine receptor (α7nAChR) has been a promising target for diseases affecting cognition and higher cortical functions; however, the effect observed in animal models failed to translate into human clinical trials identifying a translational gap. CHRFAM7A is a human-specific fusion gene with properties that enable incorporation into the α7nAChR and, being human specific, CHRFAM7A effect was not accounted for in preclinical studies. We hypothesized that CHRFAM7A may account for this translational gap and understanding its function may offer novel insights when exploring α7nAChR as a drug target. CHRFAM7A is present in different copy number variations (CNV) in the human genome with high frequency. To study the functional consequences of the presence of the CHRFAM7A, two induced pluripotent stem cell (iPSC) lines (0 copy and 1 copy direct) were developed. The 0 copy line was rescued with CHRFAM7A transfection to control for genetic heterogeneity. As readouts for genotype-phenotype correlation, α7nAChR synaptic transmission and amyloid beta 1-42 (Aß1-42) uptake were tested. Synaptic transmission in the presence of CHRFAM7A demonstrated that PNU-modulated desensitization of α7nAChR currents increased as a function of CHRFAM7A dosage. CHRFAM7A mitigated the dose response of Aß1-42 uptake suggesting a protective effect beyond physiological concentrations. Furthermore, in the presence of CHRFAM7A Aß1-42 uptake activated neuronal interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) without activating the canonical inflammasome pathway. Lead optimization may identify more potent molecules when the screen has a model harboring CHRFAM7A. Incorporating pharmacogenetics into clinical trials may enhance signals in efficacy measures.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Péptidos beta-Amiloides/administración & dosificación , Péptidos beta-Amiloides/metabolismo , Diferenciación Celular , Células Cultivadas , Expresión Génica , Células HEK293 , Humanos , Inflamación/metabolismo , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/metabolismo , Transmisión Sináptica
10.
Mol Cell Biol ; 25(14): 6259-66, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15988034

RESUMEN

Previous short-term studies have correlated an increase in the phosphorylation of the 20-kDa light chain of myosin II (MLC20) with blebbing in apoptotic cells. We have found that this increase in MLC20 phosphorylation is rapidly followed by MLC20 dephosphorylation when cells are stimulated with various apoptotic agents. MLC20 dephosphorylation is not a consequence of apoptosis because MLC20 dephosphorylation precedes caspase activation when cells are stimulated with a proapoptotic agent or when myosin light chain kinase (MLCK) is inhibited pharmacologically or by microinjecting an inhibitory antibody to MLCK. Moreover, blocking caspase activation increased cell survival when MLCK is inhibited or when cells are treated with tumor necrosis factor alpha. Depolymerizing actin filaments or detaching cells, processes that destabilize the cytoskeleton, or inhibiting myosin ATPase activity also resulted in MLC20 dephosphorylation and cell death. In vivo experiments showed that inhibiting MLCK increased the number of apoptotic cells and retarded the growth of mammary cancer cells in mice. Thus, MLC20 dephosphorylation occurs during physiological cell death and prolonged MLC20 dephosphorylation can trigger apoptosis.


Asunto(s)
Apoptosis , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/metabolismo , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Caspasa 3 , Inhibidores de Caspasas , Caspasas/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Humanos , Ratones , Quinasa de Cadena Ligera de Miosina/inmunología , Fosforilación
11.
Stem Cells Int ; 2018: 3983090, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050576

RESUMEN

In vitro differentiation of human pluripotent stem cell into relevant cell types is a desirable model system that has the human biological context, is a renewable source, and is scalable. GABA interneurons and basal forebrain cholinergic neurons, derivates of the medial ganglionic eminence (MGE), are implicated in diverse neuropsychiatric diseases. Various protocols have been proposed to generate MGE progenitors: the embryoid body- (EB-) based rosette-derived (RD), the adherent (AdD), and the nonadherent (NAdD) approaches. While Wnt inhibition is frequently incorporated into the strategy, the timing varies between protocols and there is a lack of standardized outcome reporting, which precludes direct comparison. Here, we report a head-to-head comparison in three distinct experimental models to establish whether Wnt inhibition during neural stem cell, NSC (stage 1), or neural progenitor cell, NPC (stage 2), formation facilitates MGE differentiation. Wnt inhibition at both stages promotes MGE progenitor differentiation when compared to no inhibition. However, NSC (stage 1) Wnt inhibition markedly reduces the number of MGE progenitors available for downstream applications in the RD and the NAdD protocols due to early inhibition of proliferation. NPC (stage 2) Wnt inhibition in the adherent system is comparable to the EB-based methods offering a techically less challenging alternative.

12.
Endocrinology ; 148(7): 3176-84, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17412815

RESUMEN

Differentiation of stromal cells into decidual cells, which is critical to successful pregnancy, represents a complex transformation requiring changes in cytoskeletal architecture. We demonstrate that in vitro differentiation of human uterine fibroblasts into decidual cells includes down-regulation of alpha-smooth muscle actin and beta-tubulin, phosphorylation of focal adhesion kinase, and redistribution of vinculin. This is accompanied by varied adhesion to fibronectin and a modified ability to migrate. Cytoskeletal organization is determined primarily by actin-myosin II interactions governed by the phosphorylation of myosin light chain (MLC20). Decidualization induced by cAMP [with estradiol-17beta (E) and medroxyprogesterone acetate (P)] results in a 40% decrease in MLC20 phosphorylation and a 55% decline in the long (214 kDa) form of myosin light-chain kinase (MLCK). Destabilization of the cytoskeleton by inhibitors of MLCK (ML-7) or myosin II ATPase (blebbistatin) accelerates decidualization induced by cAMP (with E and P) but inhibits decidualization induced by IL-1beta (with E and P). Adenoviral infection of human uterine fibroblast cells with a constitutively active form of MLCK followed by decidualization stimuli leads to a 30% increase in MLC20 phosphorylation and prevents decidualization. These data provide evidence that the regulation of cytoskeletal dynamics by MLC20 phosphorylation is critical for decidualization.


Asunto(s)
Endometrio/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Actinas/metabolismo , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , AMP Cíclico/farmacología , Citoesqueleto/metabolismo , Endometrio/citología , Endometrio/efectos de los fármacos , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Interleucina-1beta/farmacología , Modelos Biológicos , Fosforilación/efectos de los fármacos , Embarazo , Tubulina (Proteína)/metabolismo , Útero/citología , Útero/efectos de los fármacos , Útero/metabolismo
13.
Brain Res Dev Brain Res ; 151(1-2): 67-73, 2004 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-15246693

RESUMEN

The number and affinity of GABA(B) receptors (assayed by the specific antagonist [(3)H]CGP54626A) was unchanged when compared in carefully washed cerebrocortical membranes from young (12-day-old) and adult (90-day-old) rats. In contrast, high-affinity GTPase activity, both basal and baclofen-stimulated was significantly higher (by 45% and 56%, respectively) in adult than in young rats. Similar results were obtained by concomitant determination of agonist (baclofen)-stimulated GTP gamma S binding. Under standard conditions, baclofen-stimulated GTPase activity was further considerably enhanced by exogenously added regulator of G protein function, RGS1, but not by RGS16. RGS16 was able to affect agonist-stimulated GTPase activity only in the presence of markedly increase substrate (GTP) concentrations. RGS1 alone slightly increased GTPase activity in adult rats, but neither RGS1 nor RGS16 influenced GTPase activity in membrane preparations isolated from young animals. These findings indicate increasing functional activity of trimeric G protein(s) involved in GABAergic transmission in the developing rat brain cortex and suggest a high potential of RGS1 in regulation of high-affinity GTPase activity.


Asunto(s)
Baclofeno/farmacología , Corteza Cerebral/efectos de los fármacos , Proteínas de Unión al GTP/fisiología , Envejecimiento/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Corteza Cerebral/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Agonistas del GABA/farmacología , GTP Fosfohidrolasas/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Masculino , Compuestos Organofosforados/farmacocinética , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Proteínas/farmacología , Proteínas RGS/farmacología , Ensayo de Unión Radioligante/métodos , Ratas , Tritio/farmacocinética
14.
Brain Res Dev Brain Res ; 133(1): 57-67, 2002 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-11850064

RESUMEN

Developmental changes in the distribution of guanine nucleotide-binding regulatory proteins (G proteins) were investigated in the rat brain during postnatal development. Using a standard or high-resolution urea-SDS-PAGE and specific polyclonal antipeptide antibodies oriented against G(i)alpha1/G(i)alpha2, G(i)alpha3, G(s)alpha, G(o)alpha1/G(o)alpha2, G(q)alpha/G(11)alpha and Gbeta subunit, all these proteins were determined by quantitative immunoblotting in homogenates prepared from cortex, thalamus, hippocampus and pituitary of 1-, 7-, 12-, 18-, 25- and 90-day-old animals. The levels of the majority of G protein alpha subunits, namely G(i)alpha1, G(i)alpha2, G(i)alpha3, G(o)alpha1, G(o)alpha2, G(q)alpha, G(11)alpha and Gbeta, were high already at birth. Whereas the short variant of G(s)alpha, G(s)alphaS, rose sharply in all tested brain regions between postnatal day (PD) 1 and 90, the long variant of G(s)alpha, G(s)alphaL, was unchanged in cortex and thalamus and slightly increased in hippocampus. An increase was observed also in expression of G(i)alpha1/G(i)alpha2 and G(o)alpha1 protein, while G(o)alpha2 remained constant. Minority protein G(o)alpha* dramatically increased in cortex and thalamus, was unchanged in hippocampus and not detectable in pituitary. By contrast, the highest levels of G(i)alpha3 and G(q)alpha/G(11)alpha were detected as early as at PD 1. During the next 90 days, the immunological signal of G(i)alpha3 almost disappeared and G(q)alpha/G(11)alpha continuously declined to the levels corresponding to 50% of the levels determined at birth. Expression of Gbeta subunit was basically unchanged during postnatal development. Our present analysis indicates that G(s)alpha, G(i)alpha/G(o)alpha and G(q)alpha/G(11)alpha proteins are differently expressed in the course of brain development. Differential expression of the individual alpha subunits of trimeric G proteins during postnatal development suggests their different roles in maturation of the brain tissue.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Regulación hacia Abajo/fisiología , Proteínas de Unión al GTP/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Regulación hacia Arriba/fisiología , Animales , Animales Recién Nacidos , Subunidad alfa de la Proteína de Unión al GTP Gi2 , Subunidades alfa de la Proteína de Unión al GTP , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Masculino , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Ratas Wistar
15.
Brain Res Dev Brain Res ; 133(1): 69-75, 2002 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-11850065

RESUMEN

Maturation of the brain adenylyl cyclase (AC) signalling system was investigated in the developing rat cortex, thalamus and hippocampus. Expression of AC type II, IV and VI measured by Western blot dramatically increased in all tested brain regions during the first 3 weeks after birth and these levels were maintained in adulthood. AC type I did not change during ontogenesis. In parallel, AC enzyme activities were determined in order to obtain the functional correlates to the preceding structural (immunoblot) analyses of trimeric G proteins [Ihnatovych et al., Dev. Brain Res. (2002) in press]. Surprisingly, basal, manganese-, fluoride-, forskolin- and GTP-stimulated adenylyl cyclase developed similarly. The relatively low enzyme activities, which were determined at birth, progressively increased (about four times) to a clear maximum around postnatal day PD 12. This was followed by a progressive regression to adulthood so that activity of AC at PD 90 was comparable with the low neonatal level. The peak of AC activities at PD 12 was detected in all tested brain regions. Stimulatory (isoproterenol) effect on basal AC activity as well as inhibitory (baclofen) effect on forskolin-stimulated AC activity were unchanged between PD 12 and PD 90. Thus, comparison of results of the structural and functional analyses of adenylyl cyclase signalling system revealed a clear dissociation between the increase in the amount protein of various AC isoforms and the decrease of total G-protein mediated enzyme activities between PD 12 and adulthood. As none of the complex changes in trimeric G protein levels can explain this difference, the future research has to be oriented to identification of potential negative regulators of AC in the course of brain development. Among these, the newly discovered group of GTPase activating proteins, RGS, appears to be of primary importance because these proteins represent potent negative regulators of any G protein-mediated signalling in brain.


Asunto(s)
Adenilil Ciclasas/metabolismo , Envejecimiento/metabolismo , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/fisiología , Proteínas de Unión al GTP/metabolismo , Transducción de Señal/fisiología , Adenilil Ciclasas/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Proteínas de Unión al GTP/efectos de los fármacos , Isoenzimas/efectos de los fármacos , Isoenzimas/metabolismo , Masculino , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
16.
Neurosci Lett ; 330(1): 9-12, 2002 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-12213622

RESUMEN

Ontogenetic changes in the levels of GABA(B) receptors and their ability to modulate adenylyl cyclase (AC) activity were analyzed in rat cortex, thalamus and hippocampus. The relative numbers of GABA(B) receptors (measured as saturable, high-affinity [(3)H](-)baclofen binding sites) in cortex and thalamus were high already at postnatal day 1 (PD 1) and they reached a maximum at PD 25 and PD 12, respectively. There were no detectable high-affinity [(3)H](-)baclofen binding sites in hippocampus between birth and PD 12 and low-affinity [(3)H](-)baclofen binding attained at PD 12 did not change in adulthood (PD 90). Whereas GTP-stimulated AC activity in cortex and thalamus was depressed by baclofen, it was enhanced in hippocampus. These data indicate that the inhibitory effect of baclofen on AC in cortex and thalamus is primarily mediated through the alpha subunits of G(i)/G(o) proteins. The stimulatory effect of baclofen in hippocampus may be explained by engagement of Gbetagamma subunits.


Asunto(s)
Adenilil Ciclasas/metabolismo , Baclofeno/farmacología , Encéfalo/efectos de los fármacos , Animales , Animales Recién Nacidos , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/enzimología , Corteza Cerebral/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Hipocampo/crecimiento & desarrollo , Masculino , Ratas , Ratas Wistar , Receptores de GABA-B/metabolismo , Tálamo/efectos de los fármacos , Tálamo/enzimología , Tálamo/crecimiento & desarrollo
17.
PLoS One ; 9(9): e108609, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25259793

RESUMEN

Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Miosina Tipo I/genética , Próstata/metabolismo , Neoplasia Intraepitelial Prostática/genética , Neoplasias de la Próstata/genética , Isoformas de Proteínas/genética , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Miosina Tipo I/metabolismo , Próstata/patología , Neoplasia Intraepitelial Prostática/metabolismo , Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Isoformas de Proteínas/metabolismo
18.
Cytoskeleton (Hoboken) ; 69(8): 555-65, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22736583

RESUMEN

In vertebrates, two myosin Ic isoforms that localize to the cytoplasm and to the nucleus have been characterized. The isoform that predominantly localizes to the nucleus is called nuclear myosin I (NMI). NMI has been identified as a key factor involved in nuclear processes such as transcription by RNA polymerases I and II and intranuclear transport processes. We report here the identification of a previously uncharacterized third MYOIC gene product that is called isoform A. Similar to NMI, this isoform contains a unique N-terminal peptide sequence, localizes to the nucleus and colocalizes with RNA polymerase II. However, unlike NMI, upon exposure to inhibitors of RNA polymerase II transcription the newly identified isoform translocates to nuclear speckles. Furthermore, in contrast to NMI, this new isoform is absent from nucleoli and does not colocalize with RNA polymerase I. Our results suggest an unexpected diversity among nuclear myosin Ic isoforms in respect to their intranuclear localization and interaction with nuclear binding partners that could provide new insights into the regulation of myosin-dependent nuclear processes.


Asunto(s)
Núcleo Celular/metabolismo , Miosina Tipo I/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Miosina Tipo I/química , Células 3T3 NIH , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Polimerasa I/metabolismo , ARN Polimerasa II/antagonistas & inhibidores , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transcripción Genética
19.
Reprod Sci ; 18(10): 1014-24, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21693774

RESUMEN

Regulation of the actin cytoskeleton is essential for epithelial cell polarity and protein trafficking within human uterine epithelium. The actin-binding protein cofilin is involved in regulation of actin dynamics by promoting actin branching and cytoskeleton reorganization. Dual immunohistochemical staining of cofilin and G-actin (represented by DNAse I staining) revealed cofilin-G-actin colocalization in the apical side of luminal epithelial cells of human uterine endometrium during the proliferative phase of the menstrual cycle. Interestingly, during the secretory phase of the menstrual cycle, cofilin was only present on the basolateral side. To determine whether the disease endometriosis causes a different pattern of actin remodeling, we investigated an established baboon model of induced endometriosis. The cofilin pattern in the secretory phase of baboons with endometriosis was similar to the proliferative phase in normal animals; cofilin was observed in the apical parts of luminal and glandular epithelium. A phosphatase regulating the activity of cofilin, slingshot (SSH1), revealed a similar staining pattern within these tissues. These patterns were confirmed through quantitative image analysis. Quantification of messenger RNA (mRNA) detected upregulated SSH1 and suggested a progesterone resistance-related pattern of nuclear steroid hormone receptors, but no change in membrane progesterone receptors (mPR alpha or mPR beta) was observed in endometriosis. Our data indicate that the severe dyssynchrony during menstrual cycle phases in endometriosis is connected with improper cytoskeleton rearrangements. We suggest that cofilin-mediated actin reorganization in uterine epithelial cells might be important in preparation for blastocyst implantation; dysregulation of this reorganization may lead to decreased fertility in endometriosis.


Asunto(s)
Actinas/metabolismo , Cofilina 1/metabolismo , Citoesqueleto/metabolismo , Endometriosis/metabolismo , Ciclo Menstrual/fisiología , Animales , Citoesqueleto/patología , Femenino , Inmunohistoquímica , Papio
20.
Biol Reprod ; 81(1): 222-30, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19339710

RESUMEN

The differentiation of uterine stromal fibroblasts into decidual cells is critical for establishing pregnancy. This process, called decidualization, requires the reorganization of the actin cytoskeleton, which mainly depends on actin dynamics and the phosphorylation status of the myosin light chain. We manipulated actin dynamics with jasplakinolide (100 nM) and latrunculin B (1 microM), both of which significantly inhibited the synthesis of decidualization markers induced by 6 days of treatment with embryo-mimicking stimulus interleukin 1beta (IL1B) and steroid hormones (SHs; 17beta-estradiol and medroxyprogesterone acetate) in the human uterine fibroblast (HuF) in vitro model. However, only jasplakinolide had long-lasting effects on the G-actin:F-actin ratio and prevented decidualization induced by the artificial stimulus cAMP (and SHs). Actin-binding protein cofilin mainly colocalized with G-actin in the nucleus as well as the cytoplasm. Only some spots of colocalization between cofilin and F-actin were detected in the cytoplasm. Brief extraction of cytosolic proteins from living cells revealed that in cells treated with IL1B or cAMP (and SHs) for 6 days, cofilin was mainly detected in the nucleus. The translocation of cofilin from cytosol to nucleus was also detected in HuFs treated for 12 days with SHs, IL1B and SHs, and cAMP and SHs. The same significant translocation was confirmed in primary baboon stromal uterine fibroblasts. We conclude that changes in actin dynamics, particularly the stabilization of F-actin, have a significant negative impact on decidualization, and the translocation of cofilin to the nucleus is a key feature of this process in the primate.


Asunto(s)
Actinas/metabolismo , Decidua/metabolismo , Decidua/fisiología , Animales , Células Cultivadas , Cofilina 1/metabolismo , AMP Cíclico/farmacología , Implantación del Embrión/efectos de los fármacos , Implantación del Embrión/fisiología , Femenino , Hormonas Esteroides Gonadales/farmacología , Humanos , Interleucina-1beta/farmacología , Cinética , Papio , Embarazo , Multimerización de Proteína/efectos de los fármacos , Distribución Tisular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA