Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 35(11): 4077-4084, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30779576

RESUMEN

The orientation of the c-axis in octacalcium phosphate (OCP) nanocrystals that were incorporated into hybrid thin films was successfully tuned using poly(vinyl alcohol) (PVA) thin-film templates of varying thicknesses. This approach was inspired by biomineralization. Thicker PVA templates enhanced the c-axis orientation of the OCP crystals perpendicular to the substrate. Using this approach with a 900 nm thick PVA template, OCP/PVA hybrid thin films (1.8 µm thick) with a c-axis orientation perpendicular to the substrate were formed. Hydroxyapatite (HAP) hybrid thin films that also exhibited a perpendicular c-axis orientation were obtained through the topotactic transformation of the OCP/PVA hybrid thin films in aqueous solution. The thickness change of the polymer templates had a significant effect on the structure of the OCP nanocrystals in the hybrid thin films. The structural control of the OCP hybrid thin films that were formed through the biomineralization-inspired approach allowed the formation of HAP hybrid thin films with controlled structures.

2.
Langmuir ; 33(38): 10077-10083, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28857564

RESUMEN

Surface morphology is a key factor that might significantly influence the properties of biomaterials. In this study, periodic surface-ring structures have been constructed for calcium phosphate thin films via biomineralization-inspired crystallization process. The patterned octacalcium phosphate crystals have been obtained on poly(2-hydroxyethyl methacrylate) (PHEMA) matrix in the presence of poly(acrylic acid) (PAA). The patterned surface morphologies of the crystal thin films could be tuned by the amount of PAA additives. In addition, the rapid and topotactic transformation to hydroxyapatite (HAP) thin films with surface-ring structures has also been achieved. This study may provide new strategy toward the design of functional calcium phosphate-based thin-film hybrids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA