RESUMEN
Processes shaping the African Guineo-Congolian rain forest, especially in the West African part, are not well understood. Recent molecular studies, based mainly on forest tree species, confirmed the previously proposed division of the western African Guineo-Congolian rain forest into Upper Guinea (UG) and Lower Guinea (LG) separated by the Dahomey Gap (DG). Here we studied nine populations in the area of the DG and the borders of LG and UG of the widespread liana species, Chasmanthera dependens (Menispermaceae) by amplified fragment length polymorphism (AFLP), a chloroplast DNA sequence marker, and modelled the distribution based on current as well as paleoclimatic data (Holocene Climate Optimum, ca. 6 kyr BP and Last Glacial Maximum, ca. 22 kyr BP). Current population genetic structure and geographical pattern of cpDNA was related to present as well as historical modelled distributions. Results from this study show that past historical factors played an important role in shaping the distribution of C. dependens across West Africa. The Cameroon Volcanic Line seems to represent a barrier for gene flow in the present as well as in the past. Distribution modelling proposed refugia in the Dahomey Gap, supported also by higher genetic diversity. This is in contrast with the phylogeographic patterns observed in several rainforest tree species and could be explained by either diverging or more relaxed ecological requirements of this liana species.