Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107291, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636661

RESUMEN

Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.


Asunto(s)
Ceramidas , Receptores de Adiponectina , Retina , Animales , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Ratones , Ceramidas/metabolismo , Retina/metabolismo , Retina/patología , Ratones Noqueados , Ácidos Grasos Insaturados/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/genética
2.
FASEB J ; 38(8): e23606, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648465

RESUMEN

Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.


Asunto(s)
Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Células Fotorreceptoras Retinianas Bastones , Retinitis Pigmentosa , Rodopsina , Animales , Rodopsina/metabolismo , Rodopsina/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Ratones , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Cilios/metabolismo , Cilios/patología
3.
Proc Natl Acad Sci U S A ; 119(15): e2200068119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394870

RESUMEN

Some mammalian tissues uniquely concentrate carotenoids, but the underlying biochemical mechanism for this accumulation has not been fully elucidated. For instance, the central retina of the primate eyes displays high levels of the carotenoids, lutein, and zeaxanthin, whereas the pigments are largely absent in rodent retinas. We previously identified the scavenger receptor class B type 1 and the enzyme ß-carotene-oxygenase-2 (BCO2) as key components that determine carotenoid concentration in tissues. We now provide evidence that Aster (GRAM-domain-containing) proteins, recently recognized for their role in nonvesicular cholesterol transport, engage in carotenoid metabolism. Our analyses revealed that the StART-like lipid binding domain of Aster proteins can accommodate the bulky pigments and bind them with high affinity. We further showed that carotenoids and cholesterol compete for the same binding site. We established a bacterial test system to demonstrate that the StART-like domains of mouse and human Aster proteins can extract carotenoids from biological membranes. Mice deficient for the carotenoid catabolizing enzyme BCO2 concentrated carotenoids in Aster-B protein-expressing tissues such as the adrenal glands. Remarkably, Aster-B was expressed in the human but not in the mouse retina. Within the retina, Aster-B and BCO2 showed opposite expression patterns in central versus peripheral parts. Together, our study unravels the biochemical basis for intracellular carotenoid transport and implicates Aster-B in the pathway for macula pigment concentration in the human retina.


Asunto(s)
Carotenoides , Mácula Lútea , Proteínas de la Membrana , Animales , Transporte Biológico , Carotenoides/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Humanos , Mácula Lútea/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones
4.
Exp Eye Res ; 206: 108530, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33675778

RESUMEN

Noninvasive in vivo imaging of the mouse retina is essential for eye research. However, imaging the mouse fundus is challenging due to its small size and requires specialized equipment, maintenance, and training. These issues hinder the routine evaluation of the mouse retina. In this study, we developed a noncontact imaging system consisting of a smartphone, a 90D condensing lens, a homemade light diaphragm, a tripod, and a Bluetooth remote. With minimal training, examiners were able to capture fundus images from the mouse retina. We also found that fundus images captured using our system from wild type mice, mice with laser-induced retinal injury, and a mouse model of retinitis pigmentosa showed a quality similar to those captured using a commercial fundus camera. These images enabled us to identify normal structures and pathological changes in the mouse retina. Additionally, fluorescein angiography was possible with the smartphone system. We believe that the smartphone imaging system is low cost, simple, accessible, easy to operate, and suitable for the routine screening and examination of the mouse eye.


Asunto(s)
Angiografía con Fluoresceína/métodos , Oftalmoscopía/métodos , Enfermedades de la Retina/diagnóstico , Teléfono Inteligente , Animales , Fondo de Ojo , Ratones , Retina
5.
J Neurosci ; 39(28): 5581-5593, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31061086

RESUMEN

Rhodopsin mislocalization is frequently observed in retinitis pigmentosa (RP) patients. For example, class I mutant rhodopsin is deficient in the VxPx trafficking signal, mislocalizes to the plasma membrane (PM) of rod photoreceptor inner segments (ISs), and causes autosomal dominant RP. Mislocalized rhodopsin causes photoreceptor degeneration in a manner independent of light-activation. In this manuscript, we took advantage of Xenopus laevis models of both sexes expressing wild-type human rhodopsin or its class I Q344ter mutant fused to Dendra2 fluorescent protein to characterize a novel light-independent mechanism of photoreceptor degeneration caused by mislocalized rhodopsin. We found that rhodopsin mislocalized to the PM is actively internalized and transported to lysosomes where it is degraded. This degradation process results in the downregulation of a crucial component of the photoreceptor IS PM: the sodium-potassium ATPase α-subunit (NKAα). The downregulation of NKAα is not because of decreased NKAα mRNA, but due to cotransport of mislocalized rhodopsin and NKAα to lysosomes or autophagolysosomes. In a separate set of experiments, we found that class I mutant rhodopsin, which causes NKAα downregulation, also causes shortening and loss of rod outer segments (OSs); the symptoms frequently observed in the early stages of human RP. Likewise, pharmacological inhibition of NKAα led to shortening and loss of rod OSs. These combined studies suggest that mislocalized rhodopsin leads to photoreceptor dysfunction through disruption of the PM protein homeostasis and compromised NKAα function. This study unveiled a novel role of lysosome-mediated degradation in causing inherited disorders manifested by mislocalization of ciliary receptors.SIGNIFICANCE STATEMENT Retinal ciliopathy is the most common form of inherited blinding disorder frequently manifesting rhodopsin mislocalization. Our understanding of the relationships between rhodopsin mislocalization and photoreceptor dysfunction/degeneration has been far from complete. This study uncovers a hitherto uncharacterized consequence of rhodopsin mislocalization: the activation of the lysosomal pathway, which negatively regulates the amount of the sodium-potassium ATPase (NKAα) on the inner segment plasma membrane. On the plasma membrane, mislocalized rhodopsin extracts NKAα and sends it to lysosomes where they are co-degraded. Compromised NKAα function leads to shortening and loss of the photoreceptor outer segments as observed for various inherited blinding disorders. In summary, this study revealed a novel pathogenic mechanism applicable to various forms of blinding disorders caused by rhodopsin mislocalization.


Asunto(s)
Membrana Celular/metabolismo , Homeostasis , Retinitis Pigmentosa/metabolismo , Rodopsina/metabolismo , Animales , Autofagosomas/metabolismo , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisosomas/metabolismo , Masculino , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/patología , Rodopsina/genética , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Xenopus laevis
6.
FASEB J ; 33(3): 3680-3692, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30462532

RESUMEN

Retinitis pigmentosa is a devastating, blinding disorder that affects 1 in 4000 people worldwide. During the progression of the disorder, phagocytic clearance of dead photoreceptor cell bodies has a protective role by preventing additional retinal damage from accumulation of cellular debris. However, the cells responsible for the clearance remain unidentified. Taking advantage of a mouse model of retinitis pigmentosa ( RhoP23H/P23H), we clarified the roles of Müller glia in the phagocytosis of rod photoreceptor cells. During the early stage of retinal degeneration, Müller glial cells participated in the phagocytosis of dying or dead rod photoreceptors throughout the outer nuclear layer. Nearly 50% of Müller glia engaged in phagocytosis. Among the Müller phagosomes, >90% matured into phagolysosomes. Those observations indicated that Müller glial cells are the primary contributor to phagocytosis. In contrast, macrophages migrate to the inner part of the outer nuclear layer during photoreceptor degeneration, participating in the phagocytosis of a limited population of dying or dead photoreceptor cells. In healthy retinas of wild-type mice, Müller glial cells phagocytosed cell bodies of dead rod photoreceptors albeit at a lower frequency. Taken together, the phagocytic function of Müller glia is responsible for retinal homeostasis and reorganization under normal and pathologic conditions.-Sakami, S., Imanishi, Y., Palczewski, K. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.


Asunto(s)
Neuroglía/patología , Fagocitosis/fisiología , Retina/patología , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/patología , Animales , Modelos Animales de Enfermedad , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Retinitis Pigmentosa/patología
7.
Nat Chem Biol ; 12(6): 444-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27110679

RESUMEN

Usher syndrome type III (USH3), characterized by progressive deafness, variable balance disorder and blindness, is caused by destabilizing mutations in the gene encoding the clarin-1 (CLRN1) protein. Here we report a new strategy to mitigate hearing loss associated with a common USH3 mutation CLRN1(N48K) that involves cell-based high-throughput screening of small molecules capable of stabilizing CLRN1(N48K), followed by a secondary screening to eliminate general proteasome inhibitors, and finally an iterative process to optimize structure-activity relationships. This resulted in the identification of BioFocus 844 (BF844). To test the efficacy of BF844, we developed a mouse model that mimicked the progressive hearing loss associated with USH3. BF844 effectively attenuated progressive hearing loss and prevented deafness in this model. Because the CLRN1(N48K) mutation causes both hearing and vision loss, BF844 could in principle prevent both sensory deficiencies in patients with USH3. Moreover, the strategy described here could help identify drugs for other protein-destabilizing monogenic disorders.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de la Membrana/antagonistas & inhibidores , Pirazoles/farmacología , Piridazinas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Síndromes de Usher/tratamiento farmacológico , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/uso terapéutico , Piridazinas/síntesis química , Piridazinas/química , Piridazinas/uso terapéutico , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Síndromes de Usher/genética
8.
J Neurosci ; 34(24): 8164-74, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920621

RESUMEN

The photoreceptor outer segment (OS) is comprised of two compartments: plasma membrane (PM) and disk membranes. It is unknown how the PM renewal is coordinated with that of the disk membranes. Here we visualized the localization and trafficking process of rod cyclic nucleotide-gated channel α-subunit (CNGA1), a PM component essential for phototransduction. The localization was visualized by fusing CNGA1 to a fluorescent protein Dendra2 and expressing in Xenopus laevis rod photoreceptors. Dendra2 allowed us to label CNGA1 in a spatiotemporal manner and therefore discriminate between old and newly trafficked CNGA1-Dendra2 in the OS PM. Newly synthesized CNGA1 was preferentially trafficked to the basal region of the lateral OS PM where newly formed and matured disks are also added. Unique trafficking pattern and diffusion barrier excluded CNGA1 from the PM domains, which are the proposed site of disk membrane maturation. Such distinct compartmentalization allows the confinement of cyclic nucleotide-gated channel in the PM, while preventing the disk membrane incorporation. Cytochalasin D and latrunculin A treatments, which are known to disrupt F-actin-dependent disk membrane morphogenesis, prevented the entrance of newly synthesized CNGA1 to the OS PM, but did not prevent the entrance of rhodopsin and peripherin/rds to the membrane evaginations believed to be disk membrane precursors. Uptake of rhodopsin and peripherin/rds coincided with the overgrowth of the evaginations at the base of the OS. Thus F-actin is essential for the trafficking of CNGA1 to the ciliary PM, and coordinates the formations of disk membrane rim region and OS PM.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Morfogénesis/fisiología , Retina/citología , Células Fotorreceptoras Retinianas Bastones/citología , Animales , Animales Modificados Genéticamente , Membrana Celular/ultraestructura , Quelantes/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Endopeptidasas/farmacología , Técnicas In Vitro , Larva , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Morfogénesis/genética , Fotoblanqueo , Transporte de Proteínas/fisiología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Rodopsina/genética , Rodopsina/metabolismo , Xenopus
9.
J Neurosci ; 34(3): 992-1006, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431457

RESUMEN

It is unclear how unconventional secretion interplays with conventional secretion for the normal maintenance and renewal of membrane structures. The photoreceptor sensory cilium is recognized for fast membrane renewal, for which rhodopsin and peripherin/rds (P/rds) play critical roles. Here, we provide evidence that P/rds is targeted to the cilia by an unconventional secretion pathway. When expressed in ciliated hTERT-RPE1 human cell line, P/rd is localized to cilia. Cilium trafficking of P/rds was sustained even when the Golgi functions, including trans-Golgi-mediated conventional secretion, were inhibited by the small molecules brefeldin A, 30N12, and monensin. The unconventional cilia targeting of P/rds is dependent on COPII-mediated exit from the ER, but appears to be independent of GRASP55-mediated secretion. The regions in the C-terminal tail of P/rds are essential for this unconventional trafficking. In the absence of the region required for cilia targeting, P/rds was prohibited from entering the secretory pathways and was retained in the Golgi apparatus. A region essential for this Golgi retention was also found in the C-terminal tail of P/rds and supported the cilia targeting of P/rds mediated by unconventional secretion. In ciliated cells, including bovine and Xenopus laevis rod photoreceptors, P/rds was robustly sensitive to endoglycosidase H, which is consistent with its bypassing the medial Golgi and traversing the unconventional secretory pathway. Because rhodopsin is known to traffic through conventional secretion, this study of P/rds suggests that both conventional secretion and unconventional secretion need to cooperate for the renewal of the photoreceptor sensory cilium.


Asunto(s)
Cilios/metabolismo , Periferinas/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Vías Secretoras/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Bovinos , Línea Celular , Cilios/genética , Humanos , Periferinas/genética , Transporte de Proteínas/fisiología , Xenopus laevis
10.
J Physiol ; 593(22): 4923-41, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26350353

RESUMEN

KEY POINTS: This study explores the molecular mechanisms that regulate the recycling of chromophore required for pigment regeneration in mammalian cones. We report that two chromophore binding proteins, retinol dehydrogenase 8 (RDH8) and photoreceptor-specific ATP-binding cassette transporter (ABCA4) accelerate the dark adaptation of cones, first, directly, by facilitating the processing of chromophore in cones, and second, indirectly, by accelerating the turnover of chromophore in rods, which is then recycled and delivered to both rods and cones. Preventing competition with the rods by knocking out rhodopsin accelerated cone dark adaptation, demonstrating the interplay between rod and cone pigment regeneration driven by the retinal pigment epithelium (RPE). This novel interdependence of rod and cone pigment regeneration should be considered when developing therapies targeting the recycling of chromophore for rods, and evaluating residual cone function should be a critical test for such regimens targeting the RPE. ABSTRACT: Rapid recycling of visual chromophore and regeneration of the visual pigment are critical for the continuous function of mammalian cone photoreceptors in daylight vision. However, the molecular mechanisms modulating the supply of visual chromophore to cones have remained unclear. Here we explored the roles of two chromophore-binding proteins, retinol dehydrogenase 8 (RDH8) and photoreceptor-specific ATP-binding cassette transporter 4 (ABCA4), in dark adaptation of mammalian cones. We report that young adult RDH8/ABCA4-deficient mice have normal M-cone morphology but reduced visual acuity and photoresponse amplitudes. Notably, the deletion of RDH8 and ABCA4 suppressed the dark adaptation of M-cones driven by both the intraretinal visual cycle and the retinal pigmented epithelium (RPE) visual cycle. This delay can be caused by two separate mechanisms: direct involvement of RDH8 and ABCA4 in cone chromophore processing, and an indirect effect from the delayed recycling of chromophore by the RPE due to its slow release from RDH8/ABCA4-deficient rods. Intriguingly, our data suggest that RDH8 could also contribute to the oxidation of cis-retinoids in cones, a key reaction of the retina visual cycle. Finally, we dissected the roles of rod photoreceptors and RPE for dark adaptation of M-cones. We found that rods suppress, whereas RPE promotes, cone dark adaptation. Thus, therapeutic approaches targeting the RPE visual cycle could have adverse effects on the function of cones, making the evaluation of residual cone function a critical test for regimens targeting the RPE.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adaptación Fisiológica , Oxidorreductasas de Alcohol/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Oxidorreductasas de Alcohol/genética , Animales , Línea Celular , Luz , Ratones , Ratones Endogámicos C57BL , Células Fotorreceptoras Retinianas Conos/fisiología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Agudeza Visual
11.
Photochem Photobiol Sci ; 14(10): 1787-806, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26345171

RESUMEN

In the past few decades, fluorescent proteins have revolutionized the field of cell biology. Phototransformable fluorescent proteins are capable of changing their excitation and emission spectra after being exposed to specific wavelength(s) of light. The majority of phototransformable fluorescent proteins have originated from marine organisms. Genetic engineering of these proteins has made available many choices for different colors, modes of conversion, and other biophysical properties. Their phototransformative property has allowed the highlighting and tracking of subpopulations of cells, organelles, and proteins in living systems. Furthermore, phototransformable fluorescent proteins have offered new methods for superresolution fluorescence microscopy and optogenetics manipulation of proteins. One of the major advantages of phototransformable fluorescent proteins is their applicability for visualizing newly synthesized proteins that are en route to their final destinations. In this paper, we will discuss the biological applications of phototransformable fluorescent proteins with special emphasis on the application of tracking membrane proteins in vertebrate photoreceptor cells.


Asunto(s)
Células/citología , Luz , Proteínas Luminiscentes/metabolismo , Animales , Técnicas Biosensibles , Células/metabolismo , Células/efectos de la radiación , Humanos , Células Fotorreceptoras/citología , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efectos de la radiación
12.
J Neurosci ; 33(34): 13621-38, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23966685

RESUMEN

Rhodopsin is a cilia-specific GPCR essential for vision. Rhodopsin mislocalization is associated with blinding diseases called retinal ciliopathies. The mechanism by which rhodopsin mislocalizes in rod photoreceptor neurons is not well understood. Therefore, we investigated the roles of trafficking signals in rhodopsin mislocalization. Rhodopsin and its truncation mutants were fused to a photoconvertible fluorescent protein, Dendra2, and expressed in Xenopus laevis rod photoreceptors. Photoconversion of Dendra2 causes a color change from green to red, enabling visualization of the dynamic events associated with rhodopsin trafficking and renewal. We found that rhodopsin mislocalization is a facilitated process for which a signal located within 322-326 aa (CCGKN) is essential. An additional signal within 327-336 aa further facilitated the mislocalization. This collective mistrafficking signal confers toxicity to rhodopsin and causes mislocalization when the VXPX cilia-targeting motif is absent. We also determined that the VXPX motif neutralizes this mistrafficking signal, enhances ciliary targeting at least 10-fold, and accelerates trafficking of post-Golgi vesicular structures. In the absence of the VXPX motif, mislocalized rhodopsin is actively cleared through secretion of vesicles into the extracellular milieu. Therefore, this study unveiled the multiple roles of trafficking signals in rhodopsin localization and renewal.


Asunto(s)
Transporte de Proteínas/genética , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Anuros , Ojo/anatomía & histología , Femenino , Regulación de la Expresión Génica/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Modelos Moleculares , Mutación/genética , Técnicas de Cultivo de Órganos , Estimulación Luminosa , Unión Proteica , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/genética , Retina/citología , Retina/metabolismo , Retina/ultraestructura , Rodopsina/genética , Transducción de Señal/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Xenopus laevis
13.
J Neurosci ; 32(28): 9485-98, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22787034

RESUMEN

Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.


Asunto(s)
Cóclea/citología , Cóclea/crecimiento & desarrollo , Células Ciliadas Auditivas/fisiología , Mecanorreceptores/fisiología , Proteínas de la Membrana/genética , Síndromes de Usher/genética , Estimulación Acústica , Factores de Edad , Oxidorreductasas de Alcohol/metabolismo , Animales , Animales Recién Nacidos , Asparagina/genética , Bario/farmacología , Fenómenos Biofísicos/genética , Cadherinas/genética , Línea Celular Transformada , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Ciliadas Auditivas/ultraestructura , Humanos , Lisina/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Rastreo/métodos , Mutación/genética , Fibras Nerviosas/patología , Fibras Nerviosas/ultraestructura , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Estimulación Física/métodos , Psicoacústica , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Receptores AMPA/metabolismo , Sinapsis/patología , Sinapsis/ultraestructura , Transfección , Síndromes de Usher/patología , Síndromes de Usher/fisiopatología
14.
Cell Metab ; 7(3): 258-68, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18316031

RESUMEN

The cellular uptake of vitamin A from its RBP4-bound circulating form (holo-RBP4) is a homeostatic process that evidently depends on the multidomain membrane protein STRA6. In humans, mutations in STRA6 are associated with Matthew-Wood syndrome, manifested by multisystem developmental malformations. Here we addressed the metabolic basis of this inherited disease. STRA6-dependent transfer of retinol from RBP4 into cultured NIH 3T3 fibroblasts was enhanced by lecithin:retinol acyltransferase (LRAT). The retinol transfer was bidirectional, strongly suggesting that STRA6 acts as a retinol channel/transporter. Loss-of-function analysis in zebrafish embryos revealed that Stra6 deficiency caused vitamin A deprivation of the developing eyes. We provide evidence that, in the absence of Stra6, holo-Rbp4 provokes nonspecific vitamin A excess in several embryonic tissues, impairing retinoic acid receptor signaling and gene regulation. These fatal consequences of Stra6 deficiency, including craniofacial and cardiac defects and microphthalmia, were largely alleviated by reducing embryonic Rbp4 levels by morpholino oligonucleotide or pharmacological treatments.


Asunto(s)
Anomalías Múltiples/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Vitamina A/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Anomalías Múltiples/genética , Aciltransferasas/metabolismo , Animales , Anomalías Cardiovasculares/embriología , Anomalías Cardiovasculares/metabolismo , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/metabolismo , Modelos Animales de Enfermedad , Ojo/embriología , Ojo/enzimología , Ojo/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Humanos , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Ratones , Morfolinas/metabolismo , Células 3T3 NIH , Oligonucleótidos Antisentido/metabolismo , Proteínas Plasmáticas de Unión al Retinol/genética , Síndrome , Factores de Tiempo , Transducción Genética , Tretinoina/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
15.
Biology (Basel) ; 11(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138817

RESUMEN

Inherited retinal degeneration is a group of blinding disorders afflicting more than 1 in 4000 worldwide. These disorders frequently cause the death of photoreceptor cells or retinal ganglion cells. In a subset of these disorders, photoreceptor cell death is a secondary consequence of retinal pigment epithelial cell dysfunction or degeneration. This manuscript reviews current efforts in identifying targets and developing small molecule-based therapies for these devastating neuronal degenerations, for which no cures exist. Photoreceptors and retinal ganglion cells are metabolically demanding owing to their unique structures and functional properties. Modulations of metabolic pathways, which are disrupted in most inherited retinal degenerations, serve as promising therapeutic strategies. In monogenic disorders, great insights were previously obtained regarding targets associated with the defective pathways, including phototransduction, visual cycle, and mitophagy. In addition to these target-based drug discoveries, we will discuss how phenotypic screening can be harnessed to discover beneficial molecules without prior knowledge of their mechanisms of action. Because of major anatomical and biological differences, it has frequently been challenging to model human inherited retinal degeneration conditions using small animals such as rodents. Recent advances in stem cell-based techniques are opening new avenues to obtain pure populations of human retinal ganglion cells and retinal organoids with photoreceptor cells. We will discuss concurrent ideas of utilizing stem-cell-based disease models for drug discovery and preclinical development.

16.
Hum Mol Genet ; 18(15): 2748-60, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19414487

RESUMEN

Usher syndrome 3A (USH3A) is an autosomal recessive disorder characterized by progressive loss of hearing and vision due to mutation in the clarin-1 (CLRN1) gene. Lack of an animal model has hindered our ability to understand the function of CLRN1 and the pathophysiology associated with USH3A. Here we report for the first time a mouse model for ear disease in USH3A. Detailed evaluation of inner ear phenotype in the Clrn1 knockout mouse (Clrn1(-/-)) coupled with expression pattern of Clrn1 in the inner ear are presented here. Clrn1 was expressed as early as embryonic day 16.5 in the auditory and vestibular hair cells and associated ganglionic neurons, with its expression being higher in outer hair cells (OHCs) than inner hair cells. Clrn1(-/-) mice showed early onset hearing loss that rapidly progressed to severe levels. Two to three weeks after birth (P14-P21), Clrn1(-/-) mice showed elevated auditory-evoked brainstem response (ABR) thresholds and prolonged peak and interpeak latencies. By P21, approximately 70% of Clrn1(-/-) mice had no detectable ABR and by P30 these mice were deaf. Distortion product otoacoustic emissions were not recordable from Clrn1(-/-) mice. Vestibular function in Clrn1(-/-) mice mirrored the cochlear phenotype, although it deteriorated more gradually than cochlear function. Disorganization of OHC stereocilia was seen as early as P2 and by P21 OHC loss was observed. In sum, hair cell dysfunction and prolonged peak latencies in vestibular and cochlear evoked potentials in Clrn1(-/-) mice strongly indicate that Clrn1 is necessary for hair cell function and associated neural activation.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Síndromes de Usher/genética , Síndromes de Usher/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Síndromes de Usher/metabolismo
17.
J Proteome Res ; 9(2): 1173-81, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20020778

RESUMEN

Acute light-induced photoreceptor degeneration has been studied in experimental animals as a model for photoreceptor cell loss in human retinal degenerative diseases. Light absorption by rhodopsin in rod photoreceptor outer segments (OS) induces oxidative stress and initiates apoptotic cell death. However, the molecular events that induce oxidative stress and initiate the apoptotic cascade remain poorly understood. To better understand the molecular mechanisms of light-induced photoreceptor cell death, we studied the proteomic changes in OS upon intense light exposure by using a proteolytic (18)O labeling method. Of 171 proteins identified, the relative abundance of 98 proteins in light-exposed and unexposed OS was determined. The quantities of 11 proteins were found to differ by more than 2-fold between light-exposed OS and those remaining in darkness. Among the 11 proteins, 8 were phototransduction proteins and 7 of these were altered such that the efficiency of phototransduction would be reduced or quenched during light exposure. In contrast, the amount of OS rhodopsin kinase was reduced by 2-fold after light exposure, suggesting attenuation in the mechanism of quenching phototransduction. Liquid chromatography multiple reaction monitoring (LC-MRM) was performed to confirm this reduction in the quantity of rhodopsin kinase. As revealed by immunofluorescence microscopy, this reduction of rhodopsin kinase is not a result of protein translocation from the outer to the inner segment. Collectively, our findings suggest that the absolute quantity of rhodopsin kinase in rod photoreceptors is reduced upon light stimulation and that this reduction may be a contributing factor to light-induced photoreceptor cell death. This report provides new insights into the proteomic changes in the OS upon intense light exposure and creates a foundation for understanding the mechanisms of light-induced photoreceptor cell death.


Asunto(s)
Luz , Células Fotorreceptoras de Vertebrados/química , Proteómica , Animales , Cromatografía Liquida , Masculino , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley
18.
eNeuro ; 7(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32376599

RESUMEN

Rhodopsin is mislocalized to the inner segment plasma membrane (IS PM) in various blinding disorders including autosomal-dominant retinitis pigmentosa caused by class I rhodopsin mutations. In these disorders, rhodopsin-laden microvesicles are secreted into the extracellular milieu by afflicted photoreceptor cells. Using a Xenopus laevis model expressing class I mutant rhodopsin or Na+/K+-ATPase (NKA) fused to Dendra2, we fluorescently labeled the microvesicles and found retinal pigment epithelial (RPE) cells are capable of engulfing microvesicles containing rhodopsin. A unique sorting mechanism allows class I mutant rhodopsin, but not NKA, to be packaged into the microvesicles. Under normal physiological conditions, NKA is not shed as microvesicles to the extracellular space, but is degraded intracellularly. Those studies provide novel insights into protein homeostasis in the photoreceptor IS PM.


Asunto(s)
Células Fotorreceptoras Retinianas Bastones , Retinitis Pigmentosa , Animales , Mutación , Rodopsina/genética , Xenopus laevis
19.
J Cell Biol ; 166(4): 447-53, 2004 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-15314061

RESUMEN

Lipid bodies form autonomous intracellular structures in many model cells and in some cells of specific tissue origin. They contain hydrophobic substances, a set of structural proteins such as perilipin or adipose differentiation-related protein, enzymes implicated in lipid metabolism, and proteins that participate in signaling and membrane trafficking. Retinosomes, particles reminiscent of lipid bodies, have been identified in retinal pigment epithelium as distinct structures compartmentalizing a metabolic intermediate involved in regeneration of the visual chromophore. These observations suggest that lipid bodies, including retinosomes, carry out specific functions that go beyond those of mere lipid storage organelles.


Asunto(s)
Lípidos/química , Retina/citología , Animales , Proteínas Portadoras , Membrana Celular/metabolismo , Citoplasma/metabolismo , Inmunohistoquímica , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Perilipina-1 , Perilipina-2 , Fosfoproteínas/química , Retina/patología , Retina/ultraestructura , Transducción de Señal , Factores de Tiempo , Tretinoina/química
20.
J Cell Biol ; 164(3): 373-83, 2004 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-14745001

RESUMEN

Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the intrinsic fluorescence of all-trans-retinyl esters, noninvasive two-photon microscopy revealed previously uncharacterized structures (6.9 +/- 1.1 microm in length and 0.8 +/- 0.2 microm in diameter) distinct from other cellular organelles, termed the retinyl ester storage particles (RESTs), or retinosomes. These structures form autonomous all-trans-retinyl ester-rich intracellular compartments distinct from other organelles and colocalize with adipose differentiation-related protein. As demonstrated by in vivo experiments using wild-type mice, the RESTs participate in 11-cis-retinal formation. RESTs accumulate in Rpe65-/- mice incapable of carrying out the enzymatic isomerization, and correspondingly, are absent in the eyes of Lrat-/- mice deficient in retinyl ester synthesis. These results indicate that RESTs located close to the RPE plasma membrane are essential components in 11-cis-retinal production.


Asunto(s)
Vesículas Citoplasmáticas/química , Ésteres/análisis , Ojo/metabolismo , Epitelio Pigmentado Ocular/metabolismo , Retinaldehído/metabolismo , Percepción Visual/fisiología , Vitamina A/química , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Proteínas Portadoras , Vesículas Citoplasmáticas/metabolismo , Diterpenos , Ojo/química , Ojo/ultraestructura , Proteínas del Ojo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos , Ratones Noqueados , Microscopía Fluorescente/métodos , Modelos Moleculares , Estructura Molecular , Perilipina-2 , Epitelio Pigmentado Ocular/citología , Proteínas/genética , Proteínas/metabolismo , Retinaldehído/administración & dosificación , Retinaldehído/química , Vitamina A/metabolismo , cis-trans-Isomerasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA