Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Histochem Cell Biol ; 161(4): 299-323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38189822

RESUMEN

Despite the tremendous clinical successes recorded in the landscape of cancer therapy, tumor heterogeneity remains a formidable challenge to successful cancer treatment. In recent years, the emergence of high-throughput technologies has advanced our understanding of the variables influencing tumor heterogeneity beyond intrinsic tumor characteristics. Emerging knowledge shows that drivers of tumor heterogeneity are not only intrinsic to cancer cells but can also emanate from their microenvironment, which significantly favors tumor progression and impairs therapeutic response. Although much has been explored to understand the fundamentals of the influence of innate tumor factors on cancer diversity, the roles of the tumor microenvironment (TME) are often undervalued. It is therefore imperative that a clear understanding of the interactions between the TME and other tumor intrinsic factors underlying the plastic molecular behaviors of cancers be identified to develop patient-specific treatment strategies. This review highlights the roles of the TME as an emerging factor in tumor heterogeneity. More particularly, we discuss the role of the TME in the context of tumor heterogeneity and explore the cutting-edge diagnostic and therapeutic approaches that could be used to resolve this recurring clinical conundrum. We conclude by speculating on exciting research questions that can advance our understanding of tumor heterogeneity with the goal of developing customized therapeutic solutions.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
2.
Clin Exp Med ; 23(8): 4265-4287, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37966552

RESUMEN

Epithelial-mesenchymal transition (EMT) is a dynamic program crucial for organismal development and tissue regeneration. Unfortunately, this program is often hijacked by epithelial tumors to facilitate metastasis. Beyond its role in cancer spread, EMT increases cancer cell survival by activating stem cell programs and bypassing apoptotic programs. Importantly, the capacity of EMT to enforce tumor progression by altering the tumor cell phenotype without triggering immune responses opens the intriguing possibility of a mechanistic link between EMT-driven cancers and immune evasion. Indeed, EMT has been acknowledged as a of driver immune evasion, but the mechanisms are still evolving. Here, we review recent insights into the influence of EMT on tumor immune evasion. Specifically, we focus on the mechanistic roles of EMT in immune escape as the basis that may provide a platform for innovative therapeutic approaches in advanced tumors. We summarize promising therapeutic approaches currently in clinical trials and trending preclinical studies aimed at reinvigorating the tumor microenvironment to create immune-permissive conditions that facilitates immune-mediated tumor clearance. We anticipate that this will assist researchers and pharmaceutical companies in understanding how EMT compromises the immune response, potentially paving the way for effective cancer therapies.


Asunto(s)
Evasión Inmune , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Transición Epitelial-Mesenquimal , Microambiente Tumoral
3.
Food Sci Nutr ; 11(7): 4155-4169, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37457177

RESUMEN

Wnt/ß-catenin signaling pathway plays a role in cancer development, organogenesis, and embryogenesis. The abnormal activation promotes cancer stem cell renewal, proliferation, and differentiation. In the present study, molecular docking simulation and ADMET studies were carried out on selected bioactive compounds in search of ß-catenin protein inhibitors for drug discovery against cancer. Blind docking simulation was performed using PyRx software on Autodock Vina. ß-catenin protein (PDB ID: 1jdh) and 313 bioactive compounds (from PubChem database) with selected standard anticancer drugs were used for molecular docking. The ADMET properties of the best-performing compounds were calculated using SwissADME and pkCMS web servers. The results obtained from the molecular docking study showed that glycyrrhizic acid, solanine, polyphyllin I, crocin, hypericin, tubeimoside-1, diosmin, and rutin had the best binding interactions with ß-catenin protein based on their binding affinities. Glycyrrhizic acid and solanine had the same and lowest binding energy of -8.5 kcal/mol. This was followed by polyphyllin I with -8.4 kcal/mol, and crocin, hypericin, and tubeimoside-1 which all had a binding energy of 8.1 kcal/mol. Other top-performing compounds include diosmin and rutin with binding energy of -8.0 kcal/mol. The ADMET study revealed that the following compounds glycyrrhizic acid, solanine, polyphyllin I, crocin, hypericin, tubeimoside-1, diosmin, rutin, and baicalin all violated Lipinski's rule of 5 which implies poor oral bioavailability. However, based on the binding energy score, it was suggested that these pharmacologically active compounds are potential molecules to be tested against cancer.

4.
Sultan Qaboos Univ Med J ; 23(4): 526-533, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38090235

RESUMEN

Objectives: Recent molecular studies show that breast cancer (BC) is a heterogeneous disease, and several molecular changes may accumulate over time to influence treatment response. As a result, employing reliable molecular biomarkers to monitor these modifications may help deliver personalised treatment. However, this may be unrealistic in the resource-limited parts of the world. Thus, this study aimed to investigate the expression pattern of hormone receptors and p53 tumour suppressor using immunohistochemistry (IHC) in BC compared to the traditional tumour grade. Methods: In total, 205 cases were investigated, and the Modified Bloom-Richardson score system was adopted in grading the tumours. The tissue sections of the cases were stained with specific primary antibodies at dilutions of 1:60 for oestrogen receptors (ER) and progesterone receptors (PR), 1:350 for the human epidermal growth factor (HER-2/neu) and 1:50 for p53. Results: Invasive ductal carcinoma of no-specific type (n = 190, 92.7%) was predominant and grade II tumour (n = 146, 71.2%) was the most frequent. Hormone receptors ER (n = 127) and PR (n = 145) had 62.0% and 70.7% positive cases, respectively; 34.1% (n = 70) were positive for HER-2/neu, while 76.1% (n = 156) were positive for p53. Significant associations between Nottingham grade and expression patterns of ER (P <0.01), PR (P <0.001), HER-2/neu (P <0.001) and p53 (P = 0.001) were observed. Conclusion: Nottingham grade had a high degree of concordance with the patterns of expression of hormone receptors, HER-2/neu and p53, suggesting that it may play an important role in connection with the predictive and prognostic biomarkers for BC.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptores de Progesterona/metabolismo , Proteína p53 Supresora de Tumor , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Hormonas
5.
Nat Aging ; 3(7): 846-865, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37231196

RESUMEN

Aging markedly increases cancer risk, yet our mechanistic understanding of how aging influences cancer initiation is limited. Here we demonstrate that the loss of ZNRF3, an inhibitor of Wnt signaling that is frequently mutated in adrenocortical carcinoma, leads to the induction of cellular senescence that remodels the tissue microenvironment and ultimately permits metastatic adrenal cancer in old animals. The effects are sexually dimorphic, with males exhibiting earlier senescence activation and a greater innate immune response, driven in part by androgens, resulting in high myeloid cell accumulation and lower incidence of malignancy. Conversely, females present a dampened immune response and increased susceptibility to metastatic cancer. Senescence-recruited myeloid cells become depleted as tumors progress, which is recapitulated in patients in whom a low myeloid signature is associated with worse outcomes. Our study uncovers a role for myeloid cells in restraining adrenal cancer with substantial prognostic value and provides a model for interrogating pleiotropic effects of cellular senescence in cancer.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Masculino , Animales , Femenino , Carcinoma Corticosuprarrenal/genética , Envejecimiento , Senescencia Celular , Transducción de Señal , Neoplasias de la Corteza Suprarrenal/genética , Microambiente Tumoral
6.
Food Sci Nutr ; 11(7): 4191-4210, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37457145

RESUMEN

This systematic review identified various bioactive compounds which have the potential to serve as novel drugs or leads against acute myeloid leukemia. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy that arises from the dysregulation of cell differentiation, proliferation, and cell death. The risk factors associated with the onset of AML include long-term exposure to radiation and chemicals such as benzene, smoking, genetic disorders, blood disorders, advancement in age, and others. Although novel strategies to manage AML, including a refinement of the conventional chemotherapy regimens, hypomethylating agents, and molecular targeted drugs, have been developed in recent years, resistance and relapse remain the main clinical problems. In this study, three databases, PubMed/MEDLINE, ScienceDirect, and Google Scholar, were systematically searched to identify various bioactive compounds with antileukemic properties. A total of 518 articles were identified, out of which 59 were viewed as eligible for the current report. From the data extracted, over 60 bioactive compounds were identified and divided into five major groups: flavonoids, alkaloids, organosulfur compounds, terpenes, and terpenoids, and other known and emerging bioactive compounds. The mechanism of actions of the analyzed individual bioactive molecules differs remarkably and includes disrupting chromatin structure, upregulating the synthesis of certain DNA repair proteins, inducing cell cycle arrest and apoptosis, and inhibiting/regulating Hsp90 activities, DNA methyltransferase 1, and histone deacetylase 1.

7.
Front Oncol ; 11: 762817, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868979

RESUMEN

Epithelial-mesenchymal transition (EMT) is a physiological program during which polarised, immobile epithelial cells lose connection with their neighbours and are converted to migratory mesenchymal phenotype. Mechanistically, EMT occurs via a series of genetic and cellular events leading to the repression of epithelial-associated markers and upregulation of mesenchymal-associated markers. EMT is very crucial for many biological processes such as embryogenesis and ontogenesis during human development, and again it plays a significant role in wound healing during a programmed replacement of the damaged tissues. However, this process is often hijacked in pathological conditions such as tumour metastasis, which constitutes the most significant drawback in the fight against cancer, accounting for about 90% of cancer-associated mortality globally. Worse still, metastatic tumours are not only challenging to treat with the available conventional radiotherapy and surgical interventions but also resistant to several cytotoxic agents during treatment, owing to their anatomically diffuse localisation in the body system. As the quest to find an effective method of addressing metastasis in cancer intervention heightens, understanding the molecular interplay involving the signalling pathways, downstream effectors, and their interactions with the EMT would be an important requisite while the challenges of metastasis continue to punctuate. Unfortunately, the molecular underpinnings that govern this process remain to be completely illuminated. However, it is becoming increasingly clear that EMT, which initiates every episode of metastasis, significantly requires some master regulators called EMT transcription factors (EMT-TFs). Thus, this review critically examines the roles of TFs as drivers of molecular rewiring that lead to tumour initiation, progression, EMT, metastasis, and colonisation. In addition, it discusses the interaction of various signalling molecules and effector proteins with these factors. It also provides insight into promising therapeutic targets that may inhibit the metastatic process to overcome the limitation of "undruggable" cancer targets in therapeutic design and upturn the current spate of drug resistance. More so, it extends the discussion from the basic understanding of the EMT binary switch model, and ultimately unveiling the E/M cellular plasticity along a phenotypic spectrum via multiple trans-differentiations. It wraps up on how this knowledge update shapes the diagnostic and clinical approaches that may demand a potential shift in investigative paradigm using novel technologies such as single-cell analyses to improve overall patient survival.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA