Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arch Biochem Biophys ; 758: 110083, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969196

RESUMEN

Fibromyalgia (FMS) is a persistent syndrome marked by widespread musculoskeletal pain and behavioural symptoms. Given the hypothesis linking FMS aetiology to mitochondrial dysfunction and oxidative stress, we examined the biochemical correlation among these factors by studying specific proteins associated with mitochondrial homeostasis in muscle. Additionally, this study investigated the role of Boswellia serrata gum resin extract (BS), known for its various functions, including the potent induction of antioxidant enzymes, in determining protective or reparative mechanisms in the muscle cells. Sprague-Dawley rats were injected with reserpine to induce FMS. These animals exhibited moderate changes in hind limb skeletal muscles, experiencing mobility difficulties. Additionally, there were noteworthy morphological and ultrastructural alterations, along with the expression of myogenin, mitochondrial enzymes and oxidative stress markers in the gastrocnemius muscle. Interestingly, BS demonstrated a reduction in spontaneous motor activity difficulties. Moreover, BS showed a positive impact on musculoskeletal morphostructural aspects, as well as a decrease in oxidative stress and mitochondrial alterations. In particular, BS restored the mRNA expression of citrate synthase and cytochrome-c oxidase subunit II and the activity of electron transfer chain complexes. BS also influenced mitochondrial biogenesis, upregulating PGC-1α expression and the related transcription factors (Nrf1, Tfam, Nrf2, FOXO3a, SIRT3, GCLC, NQO1, SOD2 and GPx4), oxidative stress (lipid peroxidation, GSH levels and GSH-Px activity) and mitochondrial dynamics and function (Mnf2 expression and CoQ10 levels). Overall, this study underlined the key role of the mitochondrial alteration in FMS and that BS had a very high antioxidant effect in these organelles and also in the cells.


Asunto(s)
Fibromialgia , Músculo Esquelético , Estrés Oxidativo , Ratas Sprague-Dawley , Fibromialgia/metabolismo , Fibromialgia/inducido químicamente , Fibromialgia/patología , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Ratas , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Antioxidantes/metabolismo
3.
Neurochem Int ; 174: 105681, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38341035

RESUMEN

Vinclozolin (VCZ) is a widely used fungicide in agriculture, especially in fruits and wine. Various studies have detailed the effects of VCZ exposure on different organs, but no information is available on its effects on brain tissues. This paper investigated the effects of VCZ exposure on the oxidative stress and mitochondrial dysfunction in brain tissue. C57BL/6 mice were exposed to VCZ (100 mg/kg) by oral gavage for 28 days. Mitochondrial homeostasis, often known as mitochondrial quality control, involves a range of processes, including mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy and autophagy. VCZ administration modified the mRNA expression levels of Sirt1, Sirt3, PGC-1α, TFAM, Nrf1, VDAC-1 and Cyt c in brain tissue, as compared to control animals (CTR). The analyses also showed increased oxidative stress, in particular VCZ administration reduced SOD and CAT activities and GSH levels while increased T-AOC levels and lipid peroxidation. Additionally, brain tissues from VCZ group showed DNA oxidation (increased PARP-1 immunostaining) and apoptosis (increased TUNEL+ cells, increased expression of Bax mRNA level and reduced Bcl-2 levels). Western blot and immunohistochemical analyses showed increased mitophagic pathway with the accumulation of PINK1 and Parkin in mitochondria. Additionally, autophagic pathway was also increased with the increased expression and colocalization of LC3 with Neun and GFAP. Overall, this study showed that chronic VCZ exposure impaired mitochondrial homeostasis and increased oxidative stress in brain tissues.


Asunto(s)
Enfermedades Mitocondriales , Oxazoles , Estrés Oxidativo , Ratones , Animales , Ratones Endogámicos C57BL , Encéfalo , ARN Mensajero
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167301, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38878832

RESUMEN

A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.


Asunto(s)
Fibromialgia , Mitocondrias , Fibromialgia/metabolismo , Fibromialgia/patología , Animales , Mitocondrias/metabolismo , Mitocondrias/patología , Ratas , Masculino , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Biogénesis de Organelos , Médula Espinal/metabolismo , Médula Espinal/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Extractos Vegetales/farmacología , Modelos Animales de Enfermedad
8.
Front Vet Sci ; 10: 1327102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249555

RESUMEN

Introduction: Feline idiopathic cystitis is a common, chronic-relapsing disorder of the lower urinary tract. In addition to environmental modification/enrichment, long-term and safe treatment targeting specific pathophysiological changes may be of help. In this context, effective dietary interventions hold clinical promise. Palmitoyl-glucosamine (PGA) and hesperidin (HSP) are safe and authorized feed ingredients for animal nutrition under European regulations. Methods: The current study aimed to investigate whether a 3:1 mixture of micronized PGA and HSP could represent a novel mechanism-oriented approach to chronic cystitis management. A newly validated rat model of cyclophosphamide (CYP)-induced chronic cystitis was used (40 mg/kg, three intraperitoneal injections every 3rd day). Animals were randomized to orally receive either vehicle or PGA-HSP at a low (72 + 24 mg/kg) or high (doubled) dose for 13 days, starting 3 days before the chronic CYP protocol, with mesna (2-mercaptoethane-sulfonate) being used as a reference drug. Results: Higher PGA-HSP dose was effective at relieving chronic visceral pain, as measured by mechanical allodynia test (von Frey test). The severity of cystitis was also significantly improved, as shown by the reduced sonographic thickening of the bladder wall, as well as the decrease in edema, bleeding and bladder to body weight ratio compared to the vehicle treated group. A significant decrease of MPO activity, MDA level and fibrosis at Masson's trichrome staining was also observed in animals administered PGA-HSP in comparison to vehicle treated ones. The CYP-induced increase in bladder mRNA expression of pro-inflammatory cytokines was also significantly counteracted by the study mixture. Moreover, CYP-induced bladder mast cell accumulation and releasability were significantly decreased by PGA-HSP (even at the low dose), as determined by metachromatic staining, chymase and tryptase immunostaining as well as enzyme-linked immunosorbent assay for histamine and 5-hydoxytriptamine. Discussion: PGA-HSP is able to block CYP-induced decrease of tight junction proteins, claudin-1 and occludin, thus preserving the urothelial bladder function. Finally, neuroinflammatory changes were investigated, showing that dietary supplementation with PGA-HSP prevented the activation of neurons and non-neuronal cells (i.e., microglia, astrocytes and mast cells) at the spinal level, and counteracted CYP-induced increase of spinal mRNA encoding for pro-inflammatory cytokines. Altogether, the present findings confirm the uroprotective and pain-relieving effect of PGA-HSP and pave the way to potential and relevant clinical applications of the study supplement in feline idiopathic cystitis.

9.
Front Physiol ; 14: 1320960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250661

RESUMEN

Traumatic brain injury (TBI) is described as a structural damage or physiological disturbance of brain function that occurs after trauma and causes disability or death in people of all ages. New treatment targets for TBI are being explored because current medicines are frequently ineffectual and poorly tolerated. There is increasing evidence that following TBI, there are widespread changes in autophagy-related proteins in both experimental and clinical settings. The current study investigated if Boswellia Sacra Gum Resin (BSR) treatment (500 mg/kg) could modulate post-TBI neuronal autophagy and protein expression, as well as whether BSR could markedly improve functional recovery in a mouse model of TBI. Taken together our results shows for the first time that BSR limits histological alteration, lipid peroxidation, antioxidant, cytokines release and autophagic flux alteration induced by TBI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA