Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(7): 1165-1179.e11, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944332

RESUMEN

SF3B1 is the most mutated splicing factor (SF) in myelodysplastic syndromes (MDSs), which are clonal hematopoietic disorders with variable risk of leukemic transformation. Although tumorigenic SF3B1 mutations have been extensively characterized, the role of "non-mutated" wild-type SF3B1 in cancer remains largely unresolved. Here, we identify a conserved epitranscriptomic program that steers SF3B1 levels to counteract leukemogenesis. Our analysis of human and murine pre-leukemic MDS cells reveals dynamic regulation of SF3B1 protein abundance, which affects MDS-to-leukemia progression in vivo. Mechanistically, ALKBH5-driven 5' UTR m6A demethylation fine-tunes SF3B1 translation directing splicing of central DNA repair and epigenetic regulators during transformation. This impacts genome stability and leukemia progression in vivo, supporting an integrative analysis in humans that SF3B1 molecular signatures may predict mutational variability and poor prognosis. These findings highlight a post-transcriptional gene expression nexus that unveils unanticipated SF3B1-dependent cancer vulnerabilities.


Asunto(s)
Leucemia , Síndromes Mielodisplásicos , Fosfoproteínas , Factores de Empalme de ARN , Animales , Humanos , Ratones , Carcinogénesis/genética , Leucemia/genética , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
2.
Nat Rev Genet ; 24(3): 178-196, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36348050

RESUMEN

RNA is a key regulator of almost every cellular process, and the structures adopted by RNA molecules are thought to be central to their functions. The recent fast-paced evolution of high-throughput sequencing-based RNA structure mapping methods has enabled the rapid in vivo structural interrogation of entire cellular transcriptomes. Collectively, these studies are shedding new light on the long underestimated complexity of the structural organization of the transcriptome - the RNA structurome. Moreover, recent analyses are challenging the view that the RNA structurome is a static entity by revealing how RNA molecules establish intricate networks of alternative intramolecular and intermolecular interactions and that these ensembles of RNA structures are dynamically regulated to finely tune RNA functions in living cells. This new understanding of how RNA can shape cell phenotypes has important implications for the development of RNA-targeted therapeutic strategies.


Asunto(s)
ARN , Transcriptoma , ARN/genética , Conformación de Ácido Nucleico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos
3.
Mol Cell ; 81(7): 1453-1468.e12, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662273

RESUMEN

Splicing is a central RNA-based process commonly altered in human cancers; however, how spliceosomal components are co-opted during tumorigenesis remains poorly defined. Here we unravel the core splice factor SF3A3 at the nexus of a translation-based program that rewires splicing during malignant transformation. Upon MYC hyperactivation, SF3A3 levels are modulated translationally through an RNA stem-loop in an eIF3D-dependent manner. This ensures accurate splicing of mRNAs enriched for mitochondrial regulators. Altered SF3A3 translation leads to metabolic reprogramming and stem-like properties that fuel MYC tumorigenic potential in vivo. Our analysis reveals that SF3A3 protein levels predict molecular and phenotypic features of aggressive human breast cancers. These findings unveil a post-transcriptional interplay between splicing and translation that governs critical facets of MYC-driven oncogenesis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinogénesis/metabolismo , Células Madre Neoplásicas/metabolismo , Biosíntesis de Proteínas , Factores de Empalme de ARN/biosíntesis , Empalmosomas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/genética , Empalmosomas/genética
4.
Cell ; 155(1): 121-34, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074865

RESUMEN

The de novo DNA methyltransferase 3-like (Dnmt3L) is a catalytically inactive DNA methyltransferase that cooperates with Dnmt3a and Dnmt3b to methylate DNA. Dnmt3L is highly expressed in mouse embryonic stem cells (ESCs), but its function in these cells is unknown. Through genome-wide analysis of Dnmt3L knockdown in ESCs, we found that Dnmt3L is a positive regulator of methylation at the gene bodies of housekeeping genes and, more surprisingly, is also a negative regulator of methylation at promoters of bivalent genes. Dnmt3L is required for the differentiation of ESCs into primordial germ cells (PGCs) through the activation of the homeotic gene Rhox5. We demonstrate that Dnmt3L interacts with the Polycomb PRC2 complex in competition with the DNA methyltransferases Dnmt3a and Dnmt3b to maintain low methylation levels at the H3K27me3 regions. Thus, in ESCs, Dnmt3L counteracts the activity of de novo DNA methylases to maintain hypomethylation at promoters of bivalent developmental genes.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Células Madre Embrionarias/metabolismo , Regiones Promotoras Genéticas , Animales , Diferenciación Celular , ADN Metiltransferasa 3A , Proteína Potenciadora del Homólogo Zeste 2 , Células Germinativas/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/genética , Ratones , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/genética , ADN Metiltransferasa 3B
5.
Nucleic Acids Res ; 52(W1): W362-W367, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38709889

RESUMEN

RNA molecules perform a variety of functions in cells, many of which rely on their secondary and tertiary structures. Chemical probing methods coupled with high-throughput sequencing have significantly accelerated the mapping of RNA structures, and increasingly large datasets of transcriptome-wide RNA chemical probing data are becoming available. Analogously to what has been done for decades in the protein world, this RNA structural information can be leveraged to aid the discovery of structural similarity to a known RNA (or RNA family), which, in turn, can inform about the function of transcripts. We have previously developed SHAPEwarp, a sequence-agnostic method for the search of structurally homologous RNA segments in a database of reactivity profiles derived from chemical probing experiments. In its original implementation, however, SHAPEwarp required substantial computational resources, even for moderately sized databases, as well as significant Linux command line know-how. To address these limitations, we introduce here SHAPEwarp-web, a user-friendly web interface to rapidly query large databases of RNA chemical probing data for structurally similar RNAs. Aside from featuring a completely rewritten core, which speeds up by orders of magnitude the search inside large databases, the web server hosts several high-quality chemical probing databases across multiple species. SHAPEwarp-web is available from https://shapewarp.incarnatolab.com.


Asunto(s)
Internet , Conformación de Ácido Nucleico , ARN , Programas Informáticos , ARN/química , Bases de Datos de Ácidos Nucleicos , Interfaz Usuario-Computador , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
6.
Nat Methods ; 18(3): 249-252, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33619392

RESUMEN

RNA structure heterogeneity is a major challenge when querying RNA structures with chemical probing. We introduce DRACO, an algorithm for the deconvolution of coexisting RNA conformations from mutational profiling experiments. Analysis of the SARS-CoV-2 genome using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and DRACO, identifies multiple regions that fold into two mutually exclusive conformations, including a conserved structural switch in the 3' untranslated region. This work may open the way to dissecting the heterogeneity of the RNA structurome.


Asunto(s)
Algoritmos , Genoma Viral/genética , Conformación de Ácido Nucleico , ARN Viral/química , SARS-CoV-2/genética , Regiones no Traducidas 3'/genética , COVID-19 , Humanos , Mutación/efectos de los fármacos , Mutación/genética , ARN Viral/genética , Ésteres del Ácido Sulfúrico/farmacología
7.
Nucleic Acids Res ; 50(5): 2587-2602, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137201

RESUMEN

The histone acetyltransferase p300 (also known as KAT3B) is a general transcriptional coactivator that introduces the H3K27ac mark on enhancers triggering their activation and gene transcription. Genome-wide screenings demonstrated that a large fraction of long non-coding RNAs (lncRNAs) plays a role in cellular processes and organ development although the underlying molecular mechanisms remain largely unclear (1,2). We found 122 lncRNAs that interacts directly with p300. In depth analysis of one of these, lncSmad7, is required to maintain ESC self-renewal and it interacts to the C-terminal domain of p300. lncSmad7 also contains predicted RNA-DNA Hoogsteen forming base pairing. Combined Chromatin Isolation by RNA precipitation followed by sequencing (ChIRP-seq) together with CRISPR/Cas9 mutagenesis of the target sites demonstrate that lncSmad7 binds and recruits p300 to enhancers in trans, to trigger enhancer acetylation and transcriptional activation of its target genes. Thus, these results unveil a new mechanism by which p300 is recruited to the genome.


Asunto(s)
Histonas , ARN Largo no Codificante , Acetilación , Acetiltransferasas/metabolismo , Cromatina/genética , Elementos de Facilitación Genéticos , Histonas/genética , Histonas/metabolismo , ARN Largo no Codificante/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
8.
Chembiochem ; 24(5): e202200658, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594506

RESUMEN

The identification of pseudo- and N1 -methylpseudo-uridine (Ψ and mΨ, respectively) as immunosilent uridine analogues has propelled the development of mRNA-based vaccines and therapeutics. Here, we have characterised another uridine analogue, 5-ethynyluridine (EU), which has an ethynyl moiety. We show that this uridine analogue does not cause immune activation in human macrophages, as it does not induce interleukin-6 secretion or expression of the inflammatory and antiviral genes MX1, PKR, and TAP2. Moreover, EU allows for prolonged expression, as shown with mRNA coding for yellow fluorescent protein (YFP). Side-by-side comparisons of EU with unmodified, Ψ, and mΨ revealed that EU-modified mRNA is expressed at lower levels, but confers similar stability and low immunogenicity to the other uridine analogues. Furthermore, structure analysis of modified mRNAs suggests that the observed phenotype is largely independent of RNA folding. Thus, EU is a potential candidate for RNA-based vaccines and therapeutics.


Asunto(s)
Antivirales , Vacunas , Humanos , ARN Mensajero/genética , ARN Mensajero/química , Uridina
9.
Nature ; 543(7643): 72-77, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28225755

RESUMEN

In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cancer.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN/genética , ADN/metabolismo , Genes/genética , ARN Mensajero/biosíntesis , Iniciación de la Transcripción Genética , Animales , Línea Celular , ADN/química , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Poliadenilación , Caperuzas de ARN/metabolismo , ARN Polimerasa II/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Sitio de Iniciación de la Transcripción , ADN Metiltransferasa 3B
10.
Nucleic Acids Res ; 49(6): e34, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33398343

RESUMEN

Due to the mounting evidence that RNA structure plays a critical role in regulating almost any physiological as well as pathological process, being able to accurately define the folding of RNA molecules within living cells has become a crucial need. We introduce here 2-aminopyridine-3-carboxylic acid imidazolide (2A3), as a general probe for the interrogation of RNA structures in vivo. 2A3 shows moderate improvements with respect to the state-of-the-art selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) reagent NAI on naked RNA under in vitro conditions, but it significantly outperforms NAI when probing RNA structure in vivo, particularly in bacteria, underlining its increased ability to permeate biological membranes. When used as a restraint to drive RNA structure prediction, data derived by SHAPE-MaP with 2A3 yields more accurate predictions than NAI-derived data. Due to its extreme efficiency and accuracy, we can anticipate that 2A3 will rapidly take over conventional SHAPE reagents for probing RNA structures both in vitro and in vivo.


Asunto(s)
ARN/química , Células HEK293 , Humanos , Indicadores y Reactivos , Conformación de Ácido Nucleico , ADN Polimerasa Dirigida por ARN
11.
BMC Biol ; 20(1): 171, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918713

RESUMEN

BACKGROUND: The high-mobility group Hmga family of proteins are non-histone chromatin-interacting proteins which have been associated with a number of nuclear functions, including heterochromatin formation, replication, recombination, DNA repair, transcription, and formation of enhanceosomes. Due to its role based on dynamic interaction with chromatin, Hmga2 has a pathogenic role in diverse tumors and has been mainly studied in a cancer context; however, whether Hmga2 has similar physiological functions in normal cells remains less explored. Hmga2 was additionally shown to be required during the exit of embryonic stem cells (ESCs) from the ground state of pluripotency, to allow their transition into epiblast-like cells (EpiLCs), and here, we use that system to gain further understanding of normal Hmga2 function. RESULTS: We demonstrated that Hmga2 KO pluripotent stem cells fail to develop into EpiLCs. By using this experimental system, we studied the chromatin changes that take place upon the induction of EpiLCs and we observed that the loss of Hmga2 affects the histone mark H3K27me3, whose levels are higher in Hmga2 KO cells. Accordingly, a sustained expression of polycomb repressive complex 2 (PRC2), responsible for H3K27me3 deposition, was observed in KO cells. However, gene expression differences between differentiating wt vs Hmga2 KO cells did not show any significant enrichments of PRC2 targets. Similarly, endogenous Hmga2 association to chromatin in epiblast stem cells did not show any clear relationships with gene expression modification observed in Hmga2 KO. Hmga2 ChIP-seq confirmed that this protein preferentially binds to the chromatin regions associated with nuclear lamina. Starting from this observation, we demonstrated that nuclear lamina underwent severe alterations when Hmga2 KO or KD cells were induced to exit from the naïve state and this phenomenon is accompanied by a mislocalization of the heterochromatin mark H3K9me3 within the nucleus. As nuclear lamina (NL) is involved in the organization of 3D chromatin structure, we explored the possible effects of Hmga2 loss on this phenomenon. The analysis of Hi-C data in wt and Hmga2 KO cells allowed us to observe that inter-TAD (topologically associated domains) interactions in Hmga2 KO cells are different from those observed in wt cells. These differences clearly show a peculiar compartmentalization of inter-TAD interactions in chromatin regions associated or not to nuclear lamina. CONCLUSIONS: Overall, our results indicate that Hmga2 interacts with heterochromatic lamin-associated domains, and highlight a role for Hmga2 in the crosstalk between chromatin and nuclear lamina, affecting the establishment of inter-TAD interactions.


Asunto(s)
Membrana Nuclear , Células Madre Pluripotentes , Cromatina/genética , Cromatina/metabolismo , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Heterocromatina/metabolismo , Histonas/genética , Membrana Nuclear/metabolismo , Células Madre Pluripotentes/metabolismo , Complejo Represivo Polycomb 2/genética
12.
Nat Methods ; 16(9): 887-893, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406383

RESUMEN

The ability to modify multiple genetic elements simultaneously would help to elucidate and control the gene interactions and networks underlying complex cellular functions. However, current genome engineering technologies are limited in both the number and the type of perturbations that can be performed simultaneously. Here, we demonstrate that both Cas12a and a clustered regularly interspaced short palindromic repeat (CRISPR) array can be encoded in a single transcript by adding a stabilizer tertiary RNA structure. By leveraging this system, we illustrate constitutive, conditional, inducible, orthogonal and multiplexed genome engineering of endogenous targets using up to 25 individual CRISPR RNAs delivered on a single plasmid. Our method provides a powerful platform to investigate and orchestrate the sophisticated genetic programs underlying complex cell behaviors.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Edición Génica , Redes Reguladoras de Genes , Ingeniería Genética , Genoma Humano , ARN Guía de Kinetoplastida/genética , Acidaminococcus/enzimología , Endonucleasas/genética , Células HEK293 , Humanos , Plásmidos/genética , Activación Transcripcional
13.
Nucleic Acids Res ; 48(22): 12436-12452, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33166999

RESUMEN

SARS-CoV-2 is a betacoronavirus with a linear single-stranded, positive-sense RNA genome, whose outbreak caused the ongoing COVID-19 pandemic. The ability of coronaviruses to rapidly evolve, adapt, and cross species barriers makes the development of effective and durable therapeutic strategies a challenging and urgent need. As for other RNA viruses, genomic RNA structures are expected to play crucial roles in several steps of the coronavirus replication cycle. Despite this, only a handful of functionally-conserved coronavirus structural RNA elements have been identified to date. Here, we performed RNA structure probing to obtain single-base resolution secondary structure maps of the full SARS-CoV-2 coronavirus genome both in vitro and in living infected cells. Probing data recapitulate the previously described coronavirus RNA elements (5' UTR and s2m), and reveal new structures. Of these, ∼10.2% show significant covariation among SARS-CoV-2 and other coronaviruses, hinting at their functionally-conserved role. Secondary structure-restrained 3D modeling of these segments further allowed for the identification of putative druggable pockets. In addition, we identify a set of single-stranded segments in vivo, showing high sequence conservation, suitable for the development of antisense oligonucleotide therapeutics. Collectively, our work lays the foundation for the development of innovative RNA-targeted therapeutic strategies to fight SARS-related infections.


Asunto(s)
COVID-19/prevención & control , Genoma Viral/genética , Conformación de Ácido Nucleico , ARN Viral/química , SARS-CoV-2/genética , Regiones no Traducidas 5'/genética , Algoritmos , Antivirales/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Secuencia de Bases , Sitios de Unión/genética , COVID-19/epidemiología , COVID-19/virología , Secuencia Conservada/genética , Humanos , Modelos Moleculares , Pandemias , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología
14.
Br J Haematol ; 193(3): 581-591, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33570193

RESUMEN

Multiple functions of CD38 need exploring to expand clinical application of anti-CD38 antibodies in multiple myeloma (MM). We investigated membrane dynamics of MM cells and subsequent events when CD38 is targeted by therapeutic antibodies. Human MM cells (BF01) were co-cultured in vitro with therapeutic antibody (or control immunoglobulin G) and analysed using gene expression profiling. Microvesicles from antibody-exposed cells were analysed for differential gene and microRNA (miRNA) expression, and for phenotypic characterisation. Exposure of BF01 cells to anti-CD38 antibody resulted in CD38 membrane redistribution, upregulation of metabolism-related genes and downregulation of genes involved in cell cycle processes. Microvesicles derived from antibody-exposed cells showed increased CD73 and CD39 expression, presence of programmed death-ligand 1 and significant up-/down-modulation of miRNAs. Microvesicles accumulated around immunoglobulin Fc receptor-positive (FcR+ ) cells. Upon internalisation, natural killer cells displayed significantly increased expression of genes related to activation and immune response, and downregulation of genes involved in the cell cycle. Cells may use microvesicles to transmit signals distally as part of a survival strategy. Microvesicles are equipped on their surface with enzymatic machinery leading to production of tolerogenic adenosine. Further, they are internalised in FcR+ cells with significant functional modifications. These observations have relevance for improving anti-CD38 therapeutic antibodies through targeting this mechanism and its sequelae.


Asunto(s)
ADP-Ribosil Ciclasa 1/biosíntesis , Anticuerpos Antineoplásicos/farmacología , Membrana Celular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicoproteínas de Membrana/biosíntesis , Mieloma Múltiple/metabolismo , Proteínas de Neoplasias/biosíntesis , Línea Celular Tumoral , Humanos , MicroARNs/biosíntesis , Mieloma Múltiple/tratamiento farmacológico , ARN Neoplásico/biosíntesis
15.
Biochem Soc Trans ; 49(1): 341-352, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33367597

RESUMEN

Coronaviruses (CoV) are positive-sense single-stranded RNA viruses, harboring the largest viral RNA genomes known to date. Apart from the primary sequence encoding for all the viral proteins needed for the generation of new viral particles, certain regions of CoV genomes are known to fold into stable structures, controlling several aspects of CoV life cycle, from the regulation of the discontinuous transcription of subgenomic mRNAs, to the packaging of the genome into new virions. Here we review the current knowledge on CoV RNA structures, discussing it in light of the most recent discoveries made possible by analyses of the SARS-CoV-2 genome.


Asunto(s)
Coronavirus/genética , Sistema de Lectura Ribosómico/genética , Genoma Viral/genética , ARN Ribosómico/genética , ARN Viral/genética , SARS-CoV-2/genética , COVID-19/prevención & control , COVID-19/virología , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Ribosómico/química , ARN Viral/química , SARS-CoV-2/fisiología
16.
Nucleic Acids Res ; 47(13): 7003-7017, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31053845

RESUMEN

The influenza A virus (IAV) is a continuous health threat to humans as well as animals due to its recurring epidemics and pandemics. The IAV genome is segmented and the eight negative-sense viral RNAs (vRNAs) are transcribed into positive sense complementary RNAs (cRNAs) and viral messenger RNAs (mRNAs) inside infected host cells. A role for the secondary structure of IAV mRNAs has been hypothesized and debated for many years, but knowledge on the structure mRNAs adopt in vivo is currently missing. Here we solve, for the first time, the in vivo secondary structure of IAV mRNAs in living infected cells. We demonstrate that, compared to the in vitro refolded structure, in vivo IAV mRNAs are less structured but exhibit specific locally stable elements. Moreover, we show that the targeted disruption of these high-confidence structured domains results in an extraordinary attenuation of IAV replicative capacity. Collectively, our data provide the first comprehensive map of the in vivo structural landscape of IAV mRNAs, hence providing the means for the development of new RNA-targeted antivirals.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , ARN Mensajero/química , Secuencias Reguladoras de Ácidos Nucleicos , Algoritmos , Animales , Conjuntos de Datos como Asunto , Perros , Escherichia coli , Biblioteca de Genes , Modelos Moleculares , Conformación de Ácido Nucleico , ARN/química , Pliegue del ARN , ARN sin Sentido , ARN Mensajero/genética , Selección Genética , Relación Estructura-Actividad , Termodinámica
17.
Nucleic Acids Res ; 46(16): e97, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29893890

RESUMEN

RNA is emerging as a key regulator of a plethora of biological processes. While its study has remained elusive for decades, the recent advent of high-throughput sequencing technologies provided the unique opportunity to develop novel techniques for the study of RNA structure and post-transcriptional modifications. Nonetheless, most of the required downstream bioinformatics analyses steps are not easily reproducible, thus making the application of these techniques a prerogative of few laboratories. Here we introduce RNA Framework, an all-in-one toolkit for the analysis of most NGS-based RNA structure probing and post-transcriptional modification mapping experiments. To prove the extreme versatility of RNA Framework, we applied it to both an in-house generated DMS-MaPseq dataset, and to a series of literature available experiments. Notably, when starting from publicly available datasets, our software easily allows replicating authors' findings. Collectively, RNA Framework provides the most complete and versatile toolkit to date for a rapid and streamlined analysis of the RNA epistructurome. RNA Framework is available for download at: http://www.rnaframework.com.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN/química , Análisis de Secuencia de ARN/métodos , Algoritmos , Internet , ARN/genética , ARN/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos
18.
Nucleic Acids Res ; 45(16): 9716-9725, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934475

RESUMEN

Defining the in vivo folding pathway of cellular RNAs is essential to understand how they reach their final native conformation. We here introduce a novel method, named Structural Probing of Elongating Transcripts (SPET-seq), that permits single-base resolution analysis of transcription intermediates' secondary structures on a transcriptome-wide scale, enabling base-resolution analysis of the RNA folding events. Our results suggest that cotranscriptional RNA folding in vivo is a mixture of cooperative folding events, in which local RNA secondary structure elements are formed as they get transcribed, and non-cooperative events, in which 5'-halves of long-range helices get sequestered into transient non-native interactions until their 3' counterparts have been transcribed. Together our work provides the first transcriptome-scale overview of RNA cotranscriptional folding in a living organism.


Asunto(s)
Pliegue del ARN , ARN/química , Bioquímica/métodos , Escherichia coli/genética , Conformación de Ácido Nucleico , Ribonucleasa P/química , Ribonucleasa P/metabolismo , Ésteres del Ácido Sulfúrico/química , Transcripción Genética
19.
Nucleic Acids Res ; 45(3): 1433-1441, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180324

RESUMEN

Functional characterization of the transcriptome requires tools for the systematic investigation of RNA post-transcriptional modifications. 2΄-O-methylation (2΄-OMe) of the ribose moiety is one of the most abundant post-transcriptional modifications of RNA, although its systematic analysis is difficult due to the lack of reliable high-throughput mapping methods. We describe here a novel high-throughput approach, named 2OMe-seq, that enables fast and accurate mapping at single-base resolution, and relative quantitation, of 2΄-OMe modified residues. We compare our method to other state-of-art approaches, and show that it achieves higher sensitivity and specificity. By applying 2OMe-seq to HeLa cells, we show that it is able to recover the majority of the annotated 2΄-OMe sites on ribosomal RNA. By performing knockdown of the Fibrillarin methyltransferase in mouse embryonic stem cells (ESCs) we show the ability of 2OMe-seq to capture 2΄-O-Methylation level variations. Moreover, using 2OMe-seq data we here report the discovery of 12 previously unannotated 2΄-OMe sites across 18S and 28S rRNAs, 11 of which are conserved in both human and mouse cells, and assigned the respective snoRNAs for all sites. Our approach expands the repertoire of methods for transcriptome-wide mapping of RNA post-transcriptional modifications, and promises to provide novel insights into the role of this modification.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico/química , ARN Ribosómico/genética , Análisis de Secuencia de ARN/métodos , Animales , Secuencia Conservada , Células Madre Embrionarias/metabolismo , Células HeLa , Humanos , Metilación , Ratones , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/química , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Transcriptoma
20.
Biochim Biophys Acta ; 1859(10): 1322-32, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27344374

RESUMEN

In mammals the cell-cycle progression through the G1 phase is a tightly regulated process mediated by the transcriptional activation of early genes in response to mitogenic stimuli, whose dysregulation often leads to tumorigenesis. We here report the discovery by RNA-seq of cell-cycle regulated (CCR) long intergenic non-coding RNAs (lincRNAs), potentially involved in the control of the cell-cycle progression. We identified 10 novel lincRNAs expressed in response to serum treatment in mouse embryonic fibroblasts (MEFs) and in BALB/c fibroblasts, comparably to early genes. By loss-of-function experiments we found that lincRNA CCR492 is required for G1/S progression, localizes in the cell cytoplasm and contains 4 let-7 microRNA recognition elements (MREs). Mechanistically, CCR492 functions as a competing endogenous RNA (ceRNA) to antagonize the function of let-7 microRNAs, leading to the de-repression of c-Myc. Moreover, we show that ectopic expression of CCR492 along with a constitutively active H-Ras promotes cell transformation. Thus, we identified a new lincRNA expressed as an early gene in mammalian cells to regulate the cell-cycle progression by upregulating c-Myc expression.


Asunto(s)
Transformación Celular Neoplásica/genética , Fibroblastos/metabolismo , MicroARNs/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Largo no Codificante/genética , Animales , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Embrión de Mamíferos , Fibroblastos/citología , Fase G1 , Ratones , Ratones Endogámicos BALB C , MicroARNs/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Largo no Codificante/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA