Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Brain Topogr ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236487

RESUMEN

Long-term musical training induces adaptive changes in the functional representation of the motor cortex. It is unknown if the maladaptive plasticity associated with chronic pain, frequently affecting trained musicians, may alter the use-dependent plasticity in the motor cortex. This study investigated the interaction between adaptive and maladaptive plasticity in the motor pathways, in particular how chronic pain influences long-term use-dependent plasticity. Using transcranial magnetic stimulation (TMS), corticospinal excitability was assessed by measuring the amplitude of the motor-evoked potential (MEP), area of the motor map, volume, and center of gravity of the first dorsal interosseous muscle in 19 pain-free musicians, 17 upper limb/neck pain chronic pain musicians, and 19 pain-free non-musicians as controls. Motor map volume and MEP amplitude were smaller for both pain-free and chronic pain musicians compared to pain-free controls (P < 0.011). No significant differences were found between musicians with and without chronic pain. These findings confirm that long-term musical training can lead to focalized and specialized functional organization of the primary motor cortex. Moreover, the adaptive use-dependent plasticity acquired through fine-motor skill acquisition is not significantly compromised by the maladaptive plasticity typically associated with chronic pain, highlighting the potential of long-term sensorimotor training to counteract the effects of chronic pain in the motor system.

2.
Front Bioeng Biotechnol ; 12: 1330330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681960

RESUMEN

Introduction: The primary constraint of non-invasive brain-machine interfaces (BMIs) in stroke rehabilitation lies in the poor spatial resolution of motor intention related neural activity capture. To address this limitation, hybrid brain-muscle-machine interfaces (hBMIs) have been suggested as superior alternatives. These hybrid interfaces incorporate supplementary input data from muscle signals to enhance the accuracy, smoothness and dexterity of rehabilitation device control. Nevertheless, determining the distribution of control between the brain and muscles is a complex task, particularly when applied to exoskeletons with multiple degrees of freedom (DoFs). Here we present a feasibility, usability and functionality study of a bio-inspired hybrid brain-muscle machine interface to continuously control an upper limb exoskeleton with 7 DoFs. Methods: The system implements a hierarchical control strategy that follows the biologically natural motor command pathway from the brain to the muscles. Additionally, it employs an innovative mirror myoelectric decoder, offering patients a reference model to assist them in relearning healthy muscle activation patterns during training. Furthermore, the multi-DoF exoskeleton enables the practice of coordinated arm and hand movements, which may facilitate the early use of the affected arm in daily life activities. In this pilot trial six chronic and severely paralyzed patients controlled the multi-DoF exoskeleton using their brain and muscle activity. The intervention consisted of 2 weeks of hBMI training of functional tasks with the system followed by physiotherapy. Patients' feedback was collected during and after the trial by means of several feedback questionnaires. Assessment sessions comprised clinical scales and neurophysiological measurements, conducted prior to, immediately following the intervention, and at a 2-week follow-up. Results: Patients' feedback indicates a great adoption of the technology and their confidence in its rehabilitation potential. Half of the patients showed improvements in their arm function and 83% improved their hand function. Furthermore, we found improved patterns of muscle activation as well as increased motor evoked potentials after the intervention. Discussion: This underscores the significant potential of bio-inspired interfaces that engage the entire nervous system, spanning from the brain to the muscles, for the rehabilitation of stroke patients, even those who are severely paralyzed and in the chronic phase.

3.
Front Hum Neurosci ; 17: 1070404, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37789905

RESUMEN

More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.

4.
Front Bioeng Biotechnol ; 10: 975037, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36394044

RESUMEN

Brain-controlled neuromodulation has emerged as a promising tool to promote functional recovery in patients with motor disorders. Brain-machine interfaces exploit this neuromodulatory strategy and could be used for restoring voluntary control of lower limbs. In this work, we propose a non-invasive brain-spine interface (BSI) that processes electroencephalographic (EEG) activity to volitionally control trans-spinal magnetic stimulation (ts-MS), as an approach for lower-limb neurorehabilitation. This novel platform allows to contingently connect motor cortical activation during leg motor imagery with the activation of leg muscles via ts-MS. We tested this closed-loop system in 10 healthy participants using different stimulation conditions. This BSI efficiently removed stimulation artifacts from EEG regardless of ts-MS intensity used, allowing continuous monitoring of cortical activity and real-time closed-loop control of ts-MS. Our BSI induced afferent and efferent evoked responses, being this activation ts-MS intensity-dependent. We demonstrated the feasibility, safety and usability of this non-invasive BSI. The presented system represents a novel non-invasive means of brain-controlled neuromodulation and opens the door towards its integration as a therapeutic tool for lower-limb rehabilitation.

5.
Front Neurosci ; 14: 593360, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519355

RESUMEN

Neuromuscular electrical stimulation (NMES) of the nervous system has been extensively used in neurorehabilitation due to its capacity to engage the muscle fibers, improving muscle tone, and the neural pathways, sending afferent volleys toward the brain. Although different neuroimaging tools suggested the capability of NMES to regulate the excitability of sensorimotor cortex and corticospinal circuits, how the intensity and dose of NMES can neuromodulate the brain oscillatory activity measured with electroencephalography (EEG) is still unknown to date. We quantified the effect of NMES parameters on brain oscillatory activity of 12 healthy participants who underwent stimulation of wrist extensors during rest. Three different NMES intensities were included, two below and one above the individual motor threshold, fixing the stimulation frequency to 35 Hz and the pulse width to 300 µs. Firstly, we efficiently removed stimulation artifacts from the EEG recordings. Secondly, we analyzed the effect of amplitude and dose on the sensorimotor oscillatory activity. On the one hand, we observed a significant NMES intensity-dependent modulation of brain activity, demonstrating the direct effect of afferent receptor recruitment. On the other hand, we described a significant NMES intensity-dependent dose-effect on sensorimotor activity modulation over time, with below-motor-threshold intensities causing cortical inhibition and above-motor-threshold intensities causing cortical facilitation. Our results highlight the relevance of intensity and dose of NMES, and show that these parameters can influence the recruitment of the sensorimotor pathways from the muscle to the brain, which should be carefully considered for the design of novel neuromodulation interventions based on NMES.

6.
Neuroimage Clin ; 20: 972-986, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30312940

RESUMEN

The electroencephalogram (EEG) constitutes a relevant tool to study neural dynamics and to develop brain-machine interfaces (BMI) for rehabilitation of patients with paralysis due to stroke. However, the EEG is easily contaminated by artifacts of physiological origin, which can pollute the measured cortical activity and bias the interpretations of such data. This is especially relevant when recording EEG of stroke patients while they try to move their paretic limbs, since they generate more artifacts due to compensatory activity. In this paper, we study how physiological artifacts (i.e., eye movements, motion artifacts, muscle artifacts and compensatory movements with the other limb) can affect EEG activity of stroke patients. Data from 31 severely paralyzed stroke patients performing/attempting grasping movements with their healthy/paralyzed hand were analyzed offline. We estimated the cortical activation as the event-related desynchronization (ERD) of sensorimotor rhythms and used it to detect the movements with a pseudo-online simulated BMI. Automated state-of-the-art methods (linear regression to remove ocular contaminations and statistical thresholding to reject the other types of artifacts) were used to minimize the influence of artifacts. The effect of artifact reduction was quantified in terms of ERD and BMI performance. The results reveal a significant contamination affecting the EEG, being involuntary muscle activity the main source of artifacts. Artifact reduction helped extracting the oscillatory signatures of motor tasks, isolating relevant information from noise and revealing a more prominent ERD activity. Lower BMI performances were obtained when artifacts were eliminated from the training datasets. This suggests that artifacts produce an optimistic bias that improves theoretical accuracy but may result in a poor link between task-related oscillatory activity and BMI peripheral feedback. With a clinically relevant dataset of stroke patients, we evidence the need of appropriate methodologies to remove artifacts from EEG datasets to obtain accurate estimations of the motor brain activity.


Asunto(s)
Artefactos , Encéfalo/fisiopatología , Movimiento/fisiología , Parálisis/fisiopatología , Accidente Cerebrovascular/fisiopatología , Adulto , Anciano , Interfaces Cerebro-Computador , Electroencefalografía/métodos , Movimientos Oculares/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 2518-2521, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29060411

RESUMEN

Recent studies have shown the feasibility of spinal cord stimulation (SCS) for motor rehabilitation. Currently, there is an increasing interest in developing closed-loop systems employing SCS for lower-limb recovery. These closed-loop systems are based on the use of neurophysiological signals to modulate the stimulation. It is known that electromagnetic stimulation can introduce undesirable noise to the electrophysiological recordings. However, there is little evidence about how electroencephalographic (EEG) or electromyographic (EMG) activities are corrupted when a trans-spinal magnetic stimulation is applied. This paper studies the effects of magnetic SCS in EEG and EMG activity. Furthermore, a median filter is proposed to ameliorate the effects of the artifacts, and to preserve the neural activity. Our results show that SCS can affect both EEG and EMG, and that, while the median filter works well to clean the EEG activity, it did not improve the contaminations of the EMG activity. The obtained results underline the need of cleaning EMG and EEG signals contaminated by SCS, which is essential for optimal closed-loop rehabilitation.


Asunto(s)
Estimulación de la Médula Espinal , Artefactos , Técnicas Electroquímicas , Electroencefalografía , Electromiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA