Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849372

RESUMEN

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Asunto(s)
Desaminasas APOBEC/genética , Neoplasias/genética , Desaminasas APOBEC/metabolismo , Línea Celular , Línea Celular Tumoral , ADN/metabolismo , Análisis Mutacional de ADN/métodos , Bases de Datos Genéticas , Exoma , Genoma Humano/genética , Xenoinjertos , Humanos , Mutagénesis , Mutación/genética , Tasa de Mutación , Retroelementos , Secuenciación del Exoma/métodos
2.
Cell ; 166(3): 740-754, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27397505

RESUMEN

Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Análisis de Varianza , Línea Celular Tumoral , Metilación de ADN , Resistencia a Antineoplásicos/genética , Dosificación de Gen , Humanos , Modelos Genéticos , Mutación , Neoplasias/genética , Oncogenes , Medicina de Precisión
3.
Cell ; 161(4): 933-45, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957691

RESUMEN

In Rspondin-based 3D cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. We report the establishment of tumor organoid cultures from 20 consecutive colorectal carcinoma (CRC) patients. For most, organoids were also generated from adjacent normal tissue. Organoids closely recapitulate several properties of the original tumor. The spectrum of genetic changes within the "living biobank" agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43, rather than in APC. Organoid technology may fill the gap between cancer genetics and patient trials, complement cell-line- and xenograft-based drug studies, and allow personalized therapy design. PAPERCLIP.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Organoides , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Oncogénicas/metabolismo , Técnicas de Cultivo de Órganos , Organoides/efectos de los fármacos , Medicina de Precisión , Ubiquitina-Proteína Ligasas
4.
Nature ; 611(7937): 744-753, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289336

RESUMEN

Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity1. The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired whole-genome and transcriptome sequencing, we find that the majority of intratumour variation in gene expression is not strongly heritable but rather 'plastic'. Somatic expression quantitative trait loci analysis identified a number of putative genetic controls of expression by cis-acting coding and non-coding mutations, the majority of which were clonal within a tumour, alongside frequent structural alterations. Consistently, computational inference on the spatial patterning of tumour phylogenies finds that a considerable proportion of CRCs did not show evidence of subclonal selection, with only a subset of putative genetic drivers associated with subclone expansions. Spatial intermixing of clones is common, with some tumours growing exponentially and others only at the periphery. Together, our data suggest that most genetic intratumour variation in CRC has no major phenotypic consequence and that transcriptional plasticity is, instead, widespread within a tumour.


Asunto(s)
Adaptación Fisiológica , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Fenotipo , Humanos , Adaptación Fisiológica/genética , Células Clonales/metabolismo , Células Clonales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación , Secuenciación del Exoma , Transcripción Genética
5.
Blood ; 144(16): 1705-1721, 2024 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-39158066

RESUMEN

ABSTRACT: Multiple myeloma (MM) is an incurable malignancy characterized by altered expression of coding and noncoding genes promoting tumor growth and drug resistance. Although the crucial role of long noncoding RNAs (lncRNAs) in MM is clearly established, the function of the noncoding RNAome, which might allow the design of novel therapeutics, is largely unknown. We performed an unbiased CRISPR-Cas9 loss-of-function screen of 671 lncRNAs in MM cells and their bortezomib (BZB)-resistant derivative. To rank functionally and clinically relevant candidates, we designed and used a bioinformatic prioritization pipeline combining functional data from cellular screens with prognostic and transcriptional data from patients with MM. With this approach, we unveiled and prioritized 8 onco-lncRNAs essential for MM cell fitness, associated with high expression and poor prognosis in patients with MM. The previously uncharacterized RP11-350G8.5 emerged as the most promising target, irrespective of BZB resistance. We (1) demonstrated the anti-tumoral effect obtained by RP11-350G8.5 inhibition in vitro and in vivo; (2) highlighted a modulation of the unfolded protein response and the induction of immunogenic cell death triggered by the RP11-350G8.5 knockout, via RNA sequencing and molecular studies; (3) characterized its cytoplasmic homing through RNA fluorescence in situ hybridization; and (4) predicted its 2-dimensional structure and identified 2 G-quadruplex and 3 hairpin-forming regions by biophysical assays, including thioflavin T, 1H nuclear magnetic resonance, and circular dichroism, to pave the way to the development of novel targeted therapeutics. Overall, we provided innovative insights about unexplored lncRNAs in MM and identified RP11-350G8.5 as an oncogenic target for treatment-naïve and BZB-resistant patients with MM.


Asunto(s)
Sistemas CRISPR-Cas , Mieloma Múltiple , ARN Largo no Codificante , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/terapia , Humanos , ARN Largo no Codificante/genética , Animales , Línea Celular Tumoral , Ratones , Resistencia a Antineoplásicos/genética , Bortezomib/farmacología , Bortezomib/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica
6.
Nature ; 568(7753): 511-516, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971826

RESUMEN

Functional genomics approaches can overcome limitations-such as the lack of identification of robust targets and poor clinical efficacy-that hamper cancer drug development. Here we performed genome-scale CRISPR-Cas9 screens in 324 human cancer cell lines from 30 cancer types and developed a data-driven framework to prioritize candidates for cancer therapeutics. We integrated cell fitness effects with genomic biomarkers and target tractability for drug development to systematically prioritize new targets in defined tissues and genotypes. We verified one of our most promising dependencies, the Werner syndrome ATP-dependent helicase, as a synthetic lethal target in tumours from multiple cancer types with microsatellite instability. Our analysis provides a resource of cancer dependencies, generates a framework to prioritize cancer drug targets and suggests specific new targets. The principles described in this study can inform the initial stages of drug development by contributing to a new, diverse and more effective portfolio of cancer drug targets.


Asunto(s)
Sistemas CRISPR-Cas/genética , Descubrimiento de Drogas/métodos , Edición Génica , Terapia Molecular Dirigida/métodos , Neoplasias/genética , Neoplasias/terapia , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Femenino , Genoma Humano/genética , Humanos , Ratones , Inestabilidad de Microsatélites , Trasplante de Neoplasias , Neoplasias/clasificación , Neoplasias/patología , Especificidad de Órganos , Reproducibilidad de los Resultados , Mutaciones Letales Sintéticas/genética , Síndrome de Werner/genética , Helicasa del Síndrome de Werner/genética
7.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669133

RESUMEN

MOTIVATION: Binary (or Boolean) matrices provide a common effective data representation adopted in several domains of computational biology, especially for investigating cancer and other human diseases. For instance, they are used to summarize genetic aberrations-copy number alterations or mutations-observed in cancer patient cohorts, effectively highlighting combinatorial relations among them. One of these is the tendency for two or more genes not to be co-mutated in the same sample or patient, i.e. a mutual-exclusivity trend. Exploiting this principle has allowed identifying new cancer driver protein-interaction networks and has been proposed to design effective combinatorial anti-cancer therapies rationally. Several tools exist to identify and statistically assess mutual-exclusive cancer-driver genomic events. However, these tools need to be equipped with robust/efficient methods to sort rows and columns of a binary matrix to visually highlight possible mutual-exclusivity trends. RESULTS: Here, we formalize the mutual-exclusivity-sorting problem and present MutExMatSorting: an R package implementing a computationally efficient algorithm able to sort rows and columns of a binary matrix to highlight mutual-exclusivity patterns. Particularly, our algorithm minimizes the extent of collective vertical overlap between consecutive non-zero entries across rows while maximizing the number of adjacent non-zero entries in the same row. Here, we demonstrate that existing tools for mutual-exclusivity analysis are suboptimal according to these criteria and are outperformed by MutExMatSorting. AVAILABILITY AND IMPLEMENTATION: https://github.com/AleVin1995/MutExMatSorting. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Heurística , Neoplasias , Humanos , Algoritmos , Neoplasias/genética , Genómica , Biología Computacional/métodos , Mutación
8.
Cell ; 137(1): 172-81, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19327819

RESUMEN

Systems biology approaches are extensively used to model and reverse engineer gene regulatory networks from experimental data. Conversely, synthetic biology allows "de novo" construction of a regulatory network to seed new functions in the cell. At present, the usefulness and predictive ability of modeling and reverse engineering cannot be assessed and compared rigorously. We built in the yeast Saccharomyces cerevisiae a synthetic network, IRMA, for in vivo "benchmarking" of reverse-engineering and modeling approaches. The network is composed of five genes regulating each other through a variety of regulatory interactions; it is negligibly affected by endogenous genes, and it is responsive to small molecules. We measured time series and steady-state expression data after multiple perturbations. These data were used to assess state-of-the-art modeling and reverse-engineering techniques. A semiquantitative model was able to capture and predict the behavior of the network. Reverse engineering based on differential equations and Bayesian networks correctly inferred regulatory interactions from the experimental data.


Asunto(s)
Redes Reguladoras de Genes , Técnicas Genéticas , Modelos Genéticos , Saccharomyces cerevisiae/genética , Biología de Sistemas/métodos , Biología Computacional/métodos , Galactosa/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
Mol Syst Biol ; 18(7): e11017, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35822563

RESUMEN

Immortal cancer cell lines (CCLs) are the most widely used system for investigating cancer biology and for the preclinical development of oncology therapies. Pharmacogenomic and genome-wide editing screenings have facilitated the discovery of clinically relevant gene-drug interactions and novel therapeutic targets via large panels of extensively characterised CCLs. However, tailoring pharmacological strategies in a precision medicine context requires bridging the existing gaps between tumours and in vitro models. Indeed, intrinsic limitations of CCLs such as misidentification, the absence of tumour microenvironment and genetic drift have highlighted the need to identify the most faithful CCLs for each primary tumour while addressing their heterogeneity, with the development of new models where necessary. Here, we discuss the most significant limitations of CCLs in representing patient features, and we review computational methods aiming at systematically evaluating the suitability of CCLs as tumour proxies and identifying the best patient representative in vitro models. Additionally, we provide an overview of the applications of these methods to more complex models and discuss future machine-learning-based directions that could resolve some of the arising discrepancies.


Asunto(s)
Neoplasias , Medicina de Precisión , Línea Celular Tumoral , Edición Génica , Humanos , Neoplasias/genética , Medicina de Precisión/métodos , Microambiente Tumoral
10.
Nucleic Acids Res ; 49(D1): D1365-D1372, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33068406

RESUMEN

CRISPR genetic screens in cancer cell models are a powerful tool to elucidate oncogenic mechanisms and to identify promising therapeutic targets. The Project Score database (https://score.depmap.sanger.ac.uk/) uses genome-wide CRISPR-Cas9 dropout screening data in hundreds of highly annotated cancer cell models to identify genes required for cell fitness and prioritize novel oncology targets. The Project Score database currently allows users to investigate the fitness effect of 18 009 genes tested across 323 cancer cell models. Through interactive interfaces, users can investigate data by selecting a specific gene, cancer cell model or tissue type, as well as browsing all gene fitness scores. Additionally, users can identify and rank candidate drug targets based on an established oncology target prioritization pipeline, incorporating genetic biomarkers and clinical datasets for each target, and including suitability for drug development based on pharmaceutical tractability. Data are freely available and downloadable. To enhance analyses, links to other key resources including Open Targets, COSMIC, the Cell Model Passports, UniProt and the Genomics of Drug Sensitivity in Cancer are provided. The Project Score database is a valuable new tool for investigating genetic dependencies in cancer cells and the identification of candidate oncology targets.


Asunto(s)
Biomarcadores de Tumor/genética , Bases de Datos Factuales , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Neoplasias/genética , Programas Informáticos , Antineoplásicos/uso terapéutico , Sistemas CRISPR-Cas , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Aptitud Genética , Humanos , Internet , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Oncogenes
11.
Genome Res ; 29(3): 464-471, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30674557

RESUMEN

Genome-wide CRISPR/Cas9 knockout screens are revolutionizing mammalian functional genomics. However, their range of applications remains limited by signal variability from different guide RNAs that target the same gene, which confounds gene effect estimation and dictates large experiment sizes. To address this problem, we report JACKS, a Bayesian method that jointly analyzes screens performed with the same guide RNA library. Modeling the variable guide efficacies greatly improves hit identification over processing a single screen at a time and outperforms existing methods. This more efficient analysis gives additional hits and allows designing libraries with a 2.5-fold reduction in required cell numbers without sacrificing performance compared to current analysis standards.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Programas Informáticos , Animales , Teorema de Bayes
13.
BMC Genomics ; 22(1): 828, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789150

RESUMEN

BACKGROUND: CRISPR-Cas9 genome-wide screens are being increasingly performed, allowing systematic explorations of cancer dependencies at unprecedented accuracy and scale. One of the major computational challenges when analysing data derived from such screens is to identify genes that are essential for cell survival invariantly across tissues, conditions, and genomic-contexts (core-fitness genes), and to distinguish them from context-specific essential genes. This is of paramount importance to assess the safety profile of candidate therapeutic targets and for elucidating mechanisms involved in tissue-specific genetic diseases. RESULTS: We have developed CoRe: an R package implementing existing and novel methods for the identification of core-fitness genes (at two different level of stringency) from joint analyses of multiple CRISPR-Cas9 screens. We demonstrate, through a fully reproducible benchmarking pipeline, that CoRe outperforms state-of-the-art tools, yielding more reliable and biologically relevant sets of core-fitness genes. CONCLUSIONS: CoRe offers a flexible pipeline, compatible with many pre-processing methods for the analysis of CRISPR data, which can be tailored onto different use-cases. The CoRe package can be used for the identification of high-confidence novel core-fitness genes, as well as a means to filter out potentially cytotoxic hits while analysing cancer dependency datasets for identifying and prioritising novel selective therapeutic targets.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Benchmarking , Genes Esenciales , Humanos , Neoplasias/genética
14.
Mol Syst Biol ; 16(7): e9405, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32627965

RESUMEN

Low success rates during drug development are due, in part, to the difficulty of defining drug mechanism-of-action and molecular markers of therapeutic activity. Here, we integrated 199,219 drug sensitivity measurements for 397 unique anti-cancer drugs with genome-wide CRISPR loss-of-function screens in 484 cell lines to systematically investigate cellular drug mechanism-of-action. We observed an enrichment for positive associations between the profile of drug sensitivity and knockout of a drug's nominal target, and by leveraging protein-protein networks, we identified pathways underpinning drug sensitivity. This revealed an unappreciated positive association between mitochondrial E3 ubiquitin-protein ligase MARCH5 dependency and sensitivity to MCL1 inhibitors in breast cancer cell lines. We also estimated drug on-target and off-target activity, informing on specificity, potency and toxicity. Linking drug and gene dependency together with genomic data sets uncovered contexts in which molecular networks when perturbed mediate cancer cell loss-of-fitness and thereby provide independent and orthogonal evidence of biomarkers for drug development. This study illustrates how integrating cell line drug sensitivity with CRISPR loss-of-function screens can elucidate mechanism-of-action to advance drug development.


Asunto(s)
Antineoplásicos/farmacología , Sistemas CRISPR-Cas , Desarrollo de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Aptitud Genética/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Antineoplásicos/toxicidad , Biomarcadores/metabolismo , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes/genética , Aptitud Genética/genética , Genómica , Humanos , Modelos Lineales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Preparaciones Farmacéuticas/metabolismo , Programas Informáticos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Genome Res ; 27(4): 613-625, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28179366

RESUMEN

Drug resistance is an almost inevitable consequence of cancer therapy and ultimately proves fatal for the majority of patients. In many cases, this is the consequence of specific gene mutations that have the potential to be targeted to resensitize the tumor. The ability to uniformly saturate the genome with point mutations without chromosome or nucleotide sequence context bias would open the door to identify all putative drug resistance mutations in cancer models. Here, we describe such a method for elucidating drug resistance mechanisms using genome-wide chemical mutagenesis allied to next-generation sequencing. We show that chemically mutagenizing the genome of cancer cells dramatically increases the number of drug-resistant clones and allows the detection of both known and novel drug resistance mutations. We used an efficient computational process that allows for the rapid identification of involved pathways and druggable targets. Such a priori knowledge would greatly empower serial monitoring strategies for drug resistance in the clinic as well as the development of trials for drug-resistant patients.


Asunto(s)
Resistencia a Antineoplásicos/genética , Genoma Humano , Acumulación de Mutaciones , Tasa de Mutación , Línea Celular Tumoral , Humanos , Modelos Genéticos , Mutación Puntual
16.
Bioinformatics ; 34(7): 1226-1228, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29186349

RESUMEN

Motivation: Large pharmacogenomic screenings integrate heterogeneous cancer genomic datasets as well as anti-cancer drug responses on thousand human cancer cell lines. Mining this data to identify new therapies for cancer sub-populations would benefit from common data structures, modular computational biology tools and user-friendly interfaces. Results: We have developed GDSCTools: a software aimed at the identification of clinically relevant genomic markers of drug response. The Genomics of Drug Sensitivity in Cancer (GDSC) database (www.cancerRxgene.org) integrates heterogeneous cancer genomic datasets as well as anti-cancer drug responses on a thousand cancer cell lines. Including statistical tools (analysis of variance) and predictive methods (Elastic Net), as well as common data structures, GDSCTools allows users to reproduce published results from GDSC and to implement new analytical methods. In addition, non-GDSC data resources can also be analysed since drug responses and genomic features can be encoded as CSV files. Contact: thomas.cokelaer@pasteur.fr or saezrodriguez.rwth-aachen.de or mg12@sanger.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/genética , Farmacogenética/métodos , Programas Informáticos , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Genómica/métodos , Humanos , Neoplasias/tratamiento farmacológico
17.
BMC Genomics ; 19(1): 604, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30103702

RESUMEN

BACKGROUND: Genome editing by CRISPR-Cas9 technology allows large-scale screening of gene essentiality in cancer. A confounding factor when interpreting CRISPR-Cas9 screens is the high false-positive rate in detecting essential genes within copy number amplified regions of the genome. We have developed the computational tool CRISPRcleanR which is capable of identifying and correcting gene-independent responses to CRISPR-Cas9 targeting. CRISPRcleanR uses an unsupervised approach based on the segmentation of single-guide RNA fold change values across the genome, without making any assumption about the copy number status of the targeted genes. RESULTS: Applying our method to existing and newly generated genome-wide essentiality profiles from 15 cancer cell lines, we demonstrate that CRISPRcleanR reduces false positives when calling essential genes, correcting biases within and outside of amplified regions, while maintaining true positive rates. Established cancer dependencies and essentiality signals of amplified cancer driver genes are detectable post-correction. CRISPRcleanR reports sgRNA fold changes and normalised read counts, is therefore compatible with downstream analysis tools, and works with multiple sgRNA libraries. CONCLUSIONS: CRISPRcleanR is a versatile open-source tool for the analysis of CRISPR-Cas9 knockout screens to identify essential genes.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen/métodos , Genoma Humano , Neoplasias/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Amplificación de Genes , Técnicas de Inactivación de Genes/métodos , Genes Esenciales , Ensayos Analíticos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN , Programas Informáticos
18.
Nature ; 483(7391): 570-5, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22460902

RESUMEN

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.


Asunto(s)
Resistencia a Antineoplásicos/genética , Ensayos de Selección de Medicamentos Antitumorales , Genes Relacionados con las Neoplasias/genética , Marcadores Genéticos/genética , Genoma Humano/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Genómica , Humanos , Indoles/farmacología , Neoplasias/patología , Proteínas de Fusión Oncogénica/genética , Farmacogenética , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología
19.
Proc Natl Acad Sci U S A ; 112(6): E536-45, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25624498

RESUMEN

BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼ 80% of BRAF(V600)-mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf(V618E) (analogous to the human BRAF(V600E) mutation) led to the development of skin hyperpigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation. Treatment of Braf(V618E) transposon mice with the BRAF inhibitor PLX4720 resulted in tumor regression followed by relapse. Analysis of transposon insertions identified eight genes including Braf, Mitf, and ERas (ES-cell expressed Ras) as candidate resistance genes. Expression of ERAS in human melanoma cell lines conferred resistance to PLX4720 and induced hyperphosphorylation of AKT (v-akt murine thymoma viral oncogene homolog 1), a phenotype reverted by combinatorial treatment with PLX4720 and the AKT inhibitor MK2206. We show that ERAS expression elicits a prosurvival signal associated with phosphorylation/inactivation of BAD, and that the resistance of hepatocyte growth factor-treated human melanoma cells to PLX4720 can be reverted by treatment with the BAD-like BH3 mimetic ABT-737. Thus, we define a role for the AKT/BAD pathway in resistance to BRAF inhibition and illustrate an in vivo approach for finding drug resistance genes.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Melanoma/tratamiento farmacológico , Proteína Oncogénica p21(ras)/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Southern Blotting , Western Blotting , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Células Madre Embrionarias/metabolismo , Exoma/genética , Estudios de Asociación Genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Inmunohistoquímica , Indoles/farmacología , Melanoma/metabolismo , Ratones , Mutagénesis , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Transducción de Señal/genética , Sulfonamidas/farmacología , Transposasas/metabolismo , Proteína Letal Asociada a bcl/metabolismo
20.
BMC Bioinformatics ; 17(1): 542, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27998275

RESUMEN

BACKGROUND: Networks are popular and powerful tools to describe and model biological processes. Many computational methods have been developed to infer biological networks from literature, high-throughput experiments, and combinations of both. Additionally, a wide range of tools has been developed to map experimental data onto reference biological networks, in order to extract meaningful modules. Many of these methods assess results' significance against null distributions of randomized networks. However, these standard unconstrained randomizations do not preserve the functional characterization of the nodes in the reference networks (i.e. their degrees and connection signs), hence including potential biases in the assessment. RESULTS: Building on our previous work about rewiring bipartite networks, we propose a method for rewiring any type of unweighted networks. In particular we formally demonstrate that the problem of rewiring a signed and directed network preserving its functional connectivity (F-rewiring) reduces to the problem of rewiring two induced bipartite networks. Additionally, we reformulate the lower bound to the iterations' number of the switching-algorithm to make it suitable for the F-rewiring of networks of any size. Finally, we present BiRewire3, an open-source Bioconductor package enabling the F-rewiring of any type of unweighted network. We illustrate its application to a case study about the identification of modules from gene expression data mapped on protein interaction networks, and a second one focused on building logic models from more complex signed-directed reference signaling networks and phosphoproteomic data. CONCLUSIONS: BiRewire3 it is freely available at https://www.bioconductor.org/packages/BiRewire/ , and it should have a broad application as it allows an efficient and analytically derived statistical assessment of results from any network biology tool.


Asunto(s)
Biología Computacional/métodos , Modelos Biológicos , Algoritmos , Interpretación Estadística de Datos , Redes Reguladoras de Genes , Humanos , Mapas de Interacción de Proteínas , Distribución Aleatoria , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA