Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 14(1): 22533, 2024 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342030

RESUMEN

Recent developments have highlighted the critical role that computer-aided diagnosis (CAD) systems play in analyzing whole-slide digital histopathology images for detecting gastric cancer (GC). We present a novel framework for gastric histology classification and segmentation (GHCS) that offers modest yet meaningful improvements over existing CAD models for GC classification and segmentation. Our methodology achieves marginal improvements over conventional deep learning (DL) and machine learning (ML) models by adaptively focusing on pertinent characteristics of images. This contributes significantly to our study, highlighting that the proposed model, which performs well on normalized images, is robust in certain respects, particularly in handling variability and generalizing to different datasets. We anticipate that this robustness will lead to better results across various datasets. An expectation-maximizing Naïve Bayes classifier that uses an updated Gaussian Mixture Model is at the heart of the suggested GHCS framework. The effectiveness of our classifier is demonstrated by experimental validation on two publicly available datasets, which produced exceptional classification accuracies of 98.87% and 97.28% on validation sets and 98.47% and 97.31% on test sets. Our framework shows a slight but consistent improvement over previously existing techniques in gastric histopathology image classification tasks, as demonstrated by comparative analysis. This may be attributed to its ability to capture critical features of gastric histopathology images better. Furthermore, using an improved Fuzzy c-means method, our study produces good results in GC histopathology picture segmentation, outperforming state-of-the-art segmentation models with a Dice coefficient of 65.21% and a Jaccard index of 60.24%. The model's interpretability is complemented by Grad-CAM visualizations, which help understand the decision-making process and increase the model's trustworthiness for end-users, especially clinicians.


Asunto(s)
Diagnóstico por Computador , Neoplasias Gástricas , Neoplasias Gástricas/patología , Neoplasias Gástricas/clasificación , Neoplasias Gástricas/diagnóstico por imagen , Humanos , Diagnóstico por Computador/métodos , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Teorema de Bayes , Algoritmos , Interpretación de Imagen Asistida por Computador/métodos
2.
Front Comput Neurosci ; 18: 1423051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978524

RESUMEN

The classification of medical images is crucial in the biomedical field, and despite attempts to address the issue, significant challenges persist. To effectively categorize medical images, collecting and integrating statistical information that accurately describes the image is essential. This study proposes a unique method for feature extraction that combines deep spatial characteristics with handmade statistical features. The approach involves extracting statistical radiomics features using advanced techniques, followed by a novel handcrafted feature fusion method inspired by the ResNet deep learning model. A new feature fusion framework (FusionNet) is then used to reduce image dimensionality and simplify computation. The proposed approach is tested on MRI images of brain tumors from the BraTS dataset, and the results show that it outperforms existing methods regarding classification accuracy. The study presents three models, including a handcrafted-based model and two CNN models, which completed the binary classification task. The recommended hybrid approach achieved a high F1 score of 96.12 ± 0.41, precision of 97.77 ± 0.32, and accuracy of 97.53 ± 0.24, indicating that it has the potential to serve as a valuable tool for pathologists.

3.
Arch Comput Methods Eng ; 30(5): 3173-3233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260910

RESUMEN

Convolutional neural network (CNN) has shown dissuasive accomplishment on different areas especially Object Detection, Segmentation, Reconstruction (2D and 3D), Information Retrieval, Medical Image Registration, Multi-lingual translation, Local language Processing, Anomaly Detection on video and Speech Recognition. CNN is a special type of Neural Network, which has compelling and effective learning ability to learn features at several steps during augmentation of the data. Recently, different interesting and inspiring ideas of Deep Learning (DL) such as different activation functions, hyperparameter optimization, regularization, momentum and loss functions has improved the performance, operation and execution of CNN Different internal architecture innovation of CNN and different representational style of CNN has significantly improved the performance. This survey focuses on internal taxonomy of deep learning, different models of vonvolutional neural network, especially depth and width of models and in addition CNN components, applications and current challenges of deep learning.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37910403

RESUMEN

In the realm of machine vision, the convolutional neural network (CNN) is a frequently used and significant deep learning method. It is challenging to comprehend how predictions are formed since the inner workings of CNNs are sometimes seen as a black box. As a result, there has been an increase in interest among AI experts in creating AI systems that are easier to understand. Many strategies have shown promise in improving the interpretability of CNNs, including Class Activation Map (CAM), Grad-CAM, LIME, and other CAM-based approaches. These methods do, however, have certain drawbacks, such as architectural constraints or the requirement for gradient computations. We provide a simple framework termed Adaptive Learning based CAM (Adaptive-CAM) to take advantage of the connection between activation maps and network predictions. This framework includes temporarily masking particular feature maps. According to the Average Drop-Coherence-Complexity (ADCC) metrics, our method outperformed Score-CAM and another CAM-based activation map strategy in Residual Network-based models. With the exception of the VGG16 model, which witnessed a 1.94% decline in performance, the performance improvement spans from 3.78% to 7.72%. Additionally, Adaptive-CAM generates saliency maps that are on par with CAM-based methods and around 153 times superior to other CAM-based methods.

5.
Biomimetics (Basel) ; 8(5)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37754157

RESUMEN

A recently discovered coronavirus (COVID-19) poses a major danger to human life and health across the planet. The most important step in managing and combating COVID-19 is to accurately screen and diagnose affected people. The imaging technology of lung X-ray is a useful imaging identification/detection approach among them. The help of such computer-aided machines and diagnoses to examine lung X-ray images of COVID-19 instances can give supplemental assessment ideas to specialists, easing their workload to some level. The novel concept of this study is a hybridized approach merging pertinent manual features with deep spatial features for the classification of COVID-19. Further, we employed traditional transfer learning techniques in this investigation, utilizing four different pre-trained CNN-based deep learning models, with the Inception model showing a reasonably accurate result and a diagnosis accuracy of 82.17%. We provide a successful diagnostic approach that blends deep characteristics with machine learning classification to further increase clinical performance. It employs a complete diagnostic model. Two datasets were used to test the suggested approach, and it did quite well on several of them. On 1102 lung X-ray scans, the model was originally evaluated. The results of the experiments indicate that the suggested SVM model has a diagnostic accuracy of 95.57%. When compared to the Xception model's baseline, the diagnostic accuracy had risen by 17.58 percent. The sensitivity, specificity, and AUC of the proposed models were 95.37 percent, 95.39%, and 95.77%, respectively. To show the adaptability of our approach, we also verified our proposed model on other datasets. Finally, we arrived at results that were conclusive. When compared to research of a comparable kind, our suggested CNN model has a greater accuracy of classification and diagnostic effectiveness.

6.
Biomimetics (Basel) ; 8(4)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37622975

RESUMEN

The automated assessment of tumors in medical image analysis encounters challenges due to the resemblance of colon and lung tumors to non-mitotic nuclei and their heteromorphic characteristics. An accurate assessment of tumor nuclei presence is crucial for determining tumor aggressiveness and grading. This paper proposes a new method called ColonNet, a heteromorphous convolutional neural network (CNN) with a feature grafting methodology categorically configured for analyzing mitotic nuclei in colon and lung histopathology images. The ColonNet model consists of two stages: first, identifying potential mitotic patches within the histopathological imaging areas, and second, categorizing these patches into squamous cell carcinomas, adenocarcinomas (lung), benign (lung), benign (colon), and adenocarcinomas (colon) based on the model's guidelines. We develop and employ our deep CNNs, each capturing distinct structural, textural, and morphological properties of tumor nuclei, to construct the heteromorphous deep CNN. The execution of the proposed ColonNet model is analyzed by its comparison with state-of-the-art CNNs. The results demonstrate that our model surpasses others on the test set, achieving an impressive F1 score of 0.96, sensitivity and specificity of 0.95, and an area under the accuracy curve of 0.95. These outcomes underscore our hybrid model's superior performance, excellent generalization, and accuracy, highlighting its potential as a valuable tool to support pathologists in diagnostic activities.

7.
Heliyon ; 9(6): e16807, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37313141

RESUMEN

Massive annotated datasets are necessary for networks of deep learning. When a topic is being researched for the first time, as in the situation of the viral epidemic, handling it with limited annotated datasets might be difficult. Additionally, the datasets are quite unbalanced in this situation, with limited findings coming from significant instances of the novel illness. We offer a technique that allows a class balancing algorithm to understand and detect lung disease signs from chest X-ray and CT images. Deep learning techniques are used to train and evaluate images, enabling the extraction of basic visual attributes. The training objects' characteristics, instances, categories, and relative data modeling are all represented probabilistically. It is possible to identify a minority category in the classification process by using an imbalance-based sample analyzer. In order to address the imbalance problem, learning samples from the minority class are examined. The Support Vector Machine (SVM) is used to categorize images in clustering. Physicians and medical professionals can use the CNN model to validate their initial assessments of malignant and benign categorization. The proposed technique for class imbalance (3-Phase Dynamic Learning (3PDL)) and parallel CNN model (Hybrid Feature Fusion (HFF)) for multiple modalities achieve a high F1 score of 96.83 and precision is 96.87, its outstanding accuracy and generalization suggest that it may be utilized to create a pathologist's help tool.

8.
J Biomater Sci Polym Ed ; 32(11): 1472-1488, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33977864

RESUMEN

Films of husks of Plantango ovate, Cydonia oblonga, Mimosa pudica, Cochlospermum religiosum were prepared, delignified without protein and cellulose content, and their optical properties were evaluated. UV-Vis, FTIR TGA analysis revealed that these natural materials have strong potential in fiber optics, contact lenses and human transplantation infrastructure applications, where there is need of efficient transparency, high thermal stability and good conductivity with minimum light absorption. These natural polymeric films possess significant direct and indirect optical band gap values and better optical conductivity than currently in use synthetic polymeric materials. The Refractive index of these films is also found high in the visible region in comparison to pure or composite metal-doped synthetic films. Urbach energy (Eu), Dispersion energy (Ed), Average oscillation wavelength (λ0), and oscillation strength(S0) of this hemicellulose based natural polymeric films were found to be appropriate for such optical materials which are green, organic, economical and compatible to human systems.


Asunto(s)
Celulosa , Polímeros , Humanos , Polisacáridos
9.
Bioresour Technol ; 289: 121647, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31212173

RESUMEN

Catalytic co-pyrolysis of sugarcane bagasse (SCB) and polystyrene (PS) was conducted in a fixed bed reactor over microporous HZSM-5, mesoporous metal oxides (MgO, CaO) and their blends to examine the effect on pyrolytic liquid yields and quality. Though the catalyst addition decreased the liquid yield, improvement in mono-aromatic hydrocarbon yield with the least content of oxygenates was achieved in the catalytic trials. Results revealed that HZSM-5 showed maximum conversion efficiency of acids, furans and phenols acting as hydrocarbon source for aromatic production. Basic MgO, with acidic HZSM-5, was found to conduce better catalytic performance yielding improved oil quality compared to HZSM-5:CaO catalyst. Mass ratio of 1:3 HZSM-5:MgO exhibited most eminent synergistic effect with maximum (56.8 wt%) mono-aromatic hydrocarbon (MAH) yield and lowest (20.8 wt%) poly-aromatic hydrocarbon (PAH) content. Additionally, increased calorific value and density upgradation comparable to standard diesel fuel quality were observed in the presence of dual catalyst layout.


Asunto(s)
Saccharum , Catálisis , Celulosa , Calor , Metales , Óxidos , Poliestirenos , Pirólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA