Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Physiol Mol Biol Plants ; 29(2): 195-208, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36875727

RESUMEN

Wheat (Triticum aestivum) is one of the most important crops in the world. This investigation was attempted to evaluate the transcriptional responses of aquaporins (AQPs) to the mycorrhizal inoculation and/or water deficit conditions in wheat to clarify how the arbuscular mycorrhizal symbiosis can contribute to the modulation of water homeostasis. The wheat seedlings were subjected to the water deficiency, and mycorrhizal inoculation using arbuscular fungus Funneliformis mosseae and Illumina RNA-Seq analyses confirmed that aquaporins expressed differentially in response to both the irrigation levels and mycorrhizal colonization. Results of this study showed that only 13% of the studied AQPs were responsive to water deficit with a tiny fraction (3%) being up-regulated. Mycorrhizal inoculation had a greater impact on the expression of AQPs with ca. 26% being responsive, ca. 4% of which were up-regulated. The samples with arbuscular mycorrhizal inoculation yielded more root and stem biomass. Water deficit and mycorrhizal inoculation caused different AQPs to be up-regulated. The effect of mycorrhizal inoculation on the expression of AQPs was intensified by applying water deficiency with 32% of studied AQPs being responsive, 6% of which up-regulated. We also found that the overexpression of three genes TaNIP1-10, TaNIP3-3, and TaNIP3-4 was chiefly triggered by mycorrhizal inoculation. Our results show that water deficit has a lower impact on the expression of aquaporins compared to what the arbuscular mycorrhizal inoculation has; water deficit and arbuscular mycorrhizal inoculation mainly cause the down-regulation of the aquaporins, and water deficit and the arbuscular inoculation have synergetic effects. These findings could improve our knowledge of how arbuscular mycorrhizal symbiosis can contribute to the modulation of water homeostasis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01285-w.

2.
Ecotoxicology ; 31(4): 667-678, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35298719

RESUMEN

Cadmium (Cd) reduces plant growth by interfering with important plant metabolic processes at the physiological, biochemical, and molecular levels. Here, the effects of foliar application of zinc oxide nanoparticles (ZnO-NPs) on growth, antioxidant enzymes, glyoxalase system, and macro- and micro-elements levels of purslane (portulaca oleracea L.) under Cd toxicity were investigated. The results revealed that Cd toxicity increased the levels of hydrogen peroxide (H2O2), methylglyoxal (MG) and malondialdehyde (MDA), resulting in oxidative stress and the induction of electrolyte leakage (EL). Cd stress enhanced the leaf concentration of Cd and declined the leaf concentrations of macro- and micro-elements, resulting in a decrease in the content of photosynthetic pigments and plant growth. However, the foliar application of ZnO-NPs improved the activity of antioxidant enzymes and the glyoxalase system and, consequently, reduced the levels of H2O2, MG, MDA, and EL in Cd-stressed plants. ZnO-NPs decreased the leaf concentration of Cd and restored the leaf concentrations of macro- and micro-elements, thereby improving photosynthetic pigments and the growth of Cd-stressed purslane plants. In general, the results revealed that the foliar application of ZnO-NPs improved the growth of purslane plants under Cd phytotoxicity by maintaining nutrient homeostasis, improving the defense mechanisms (antioxidant enzymes and glyoxalase cycle), and increasing the accumulation of proline and glutathione. Therefore, the results of the present study strongly recommend that ZnO-NPs could be used effectively in the cultivation of plants in areas contaminated with toxic Cd metal.


Asunto(s)
Nanopartículas , Portulaca , Contaminantes del Suelo , Óxido de Zinc , Antioxidantes/metabolismo , Cadmio/metabolismo , Homeostasis , Peróxido de Hidrógeno/metabolismo , Nanopartículas/química , Nutrientes , Portulaca/metabolismo , Contaminantes del Suelo/análisis , Óxido de Zinc/química , Óxido de Zinc/toxicidad
3.
Exp Eye Res ; 202: 108346, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147471

RESUMEN

Retinal degenerative diseases are considered a major challenge all over the world, and stem cell therapy is a promising approach to restore degenerative cells due to RD. MSCs are multipotent stem cells found in a variety of tissues. They are capable of differentiating into various retinal cell types, so it can be a good candidate for various degenerative disorders like retinal degenerations. ß-carotene is an antioxidant that could accelerate the stem cell differentiation while using the proper scaffold. In this study, we evaluated the effect of ß-carotene on the differentiation potential of ciliary epithelium-derived MSCs isolated from mouse eyes on alginate-based scaffolds. MSCs were isolated from mouse ciliary epithelium, cultured in DMEM medium supplemented with 10% FBS, and identified by detecting their surface antigens. Three 3D culture systems, alginate, alginate/gelatin, and gelatin hydrogels were prepared, and their structures were checked via SEM. MSCs were cultured on 3D and 2D culture system scaffolds following treated with differentiation medium containing 50 µM ß-mercaptoethanol, 1 × minimum essential medium-nonessential amino acids and 20% of knockout serum replacement and ß-carotene. MSCs viability and differentiation ability were examined by MTT and ICC, respectively. The expression changes of several retinal specific genes (Nestin, RPE65, and Rhodopsin) were also evaluated by qPCR. Over 80% of cells isolated from mouse ciliary epithelium were positive for MSC-specific markers. The viability rates of MSCs grown on all alginate-based scaffolds were above 70%. MSCs cultured on alginate-based scaffold in the differentiation medium containing ß-carotene expressed higher levels of rhodopsin protein compared to a 2D culture. Also, the expressions of Nestin, Rhodopsin, and RPE65 genes were upregulated in ß-carotene-treated MSCs grown on alginate-based scaffolds. Our results indicate that the addition of ß-carotene to the differentiation medium, along with applying alginate-based scaffolds, could induce higher differentiation in mouse ciliary epithelium-derived MSCs into specialized retinal cells.


Asunto(s)
Alginatos/farmacología , Células Madre Mesenquimatosas/citología , Retina/citología , Andamios del Tejido , beta Caroteno/farmacología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos BALB C , Retina/efectos de los fármacos
4.
Physiol Mol Biol Plants ; 26(1): 143-162, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32153322

RESUMEN

Mycorrhizal symbiotic relationship is one of the most common collaborations between plant roots and the arbuscular mycorrhizal fungi (AMF). The first barrier for establishing this symbiosis is plant cell wall which strongly provides protection against biotic and abiotic stresses. The aim of this study was to investigate the gene expression changes in cell wall of wheat root cv. Chamran after inoculation with AMF, Funneliformis mosseae under two different irrigation regimes. To carry out this investigation, total RNA was extracted from the roots of mycorrhizal and non-mycorrhizal plants, and analyzed using RNA-Seq in an Illumina Next-Seq 500 platform. The results showed that symbiotic association between wheat and AMF and irrigation not only affect transcription profile of the plant growth, but also cell wall and membrane components. Of the 114428 genes expressed in wheat roots, the most differentially expressed genes were related to symbiotic plants under water stress. The most differentially expressed genes were observed in carbohydrate metabolic process, lipid metabolic process, cellulose synthase activity, membrane transports, nitrogen compound metabolic process and chitinase activity related genes. Our results indicated alteration in cell wall and membrane composition due to mycorrhization and irrigation regimes might have a noteworthy effect on the plant tolerance to water deficit.

5.
Mycologia ; 116(3): 370-380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38551373

RESUMEN

This research investigated the antioxidant responses of Pleurotus florida at different concentrations of gas oil [0% (control), 2.5%, 5%, and 10% (v:v)] for 30 days. The activities of superoxide dismutase and catalase enzymes decreased in responses to the gas oil presence by an average of 83% and 49%, respectively. In contrast, the activities of the ascorbate peroxidase and glutathione peroxidase enzymes displayed an upward trend in the groups cultured in oil-contaminated media. The gas oil contaminant increased total phenol and flavonoid accumulation, reflecting the variation in secondary metabolism. According to the 1,2-diphenyl-2-picrylhydrazyl radical scavenging, the 2.5% gas oil treatment resulted in the highest antioxidant activity (48 µg mL-1). The highest scavenging activity of nitric oxide radicals (IC50 = 272 µg mL-1) was observed in the treatment with the highest gas oil concentration (10%). Also, this treatment showed an excellent ability to chelate Fe+2 ions (IC50 = 205 µg mL-1). The IC50 values of methanolic extract for nitric oxide scavenging activity and metal chelating ability were significantly reduced by increasing gas oil concentration in the treatments. With increasing the gas oil concentration, malondialdehyde content as a criterion measure of lipid peroxidation level showed significant reduction. These results show that P. florida is resistant to and a compatible mushroom with oil pollutants. Also, the activity of glutathione peroxidase and the ascorbate-glutathione cycle detoxify nitric oxide radicals and products of reactive oxygen species-induced lipid peroxidation in the gas oil treatments.


Asunto(s)
Antioxidantes , Pleurotus , Pleurotus/química , Pleurotus/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Superóxido Dismutasa/metabolismo , Óxido Nítrico/metabolismo , Glutatión Peroxidasa/metabolismo , Catalasa/metabolismo , Petróleo/metabolismo , Flavonoides/farmacología
6.
Protoplasma ; 261(2): 293-302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37814140

RESUMEN

This study aimed to investigate the effects of clinorotation induced by 2-D clinostat on the growth, tropane alkaloid production, gene expression, antioxidant capacity, and cellular defense responses in the callus tissue of Hyoscyamus niger. Callus induction was conducted by putting hypocotyl explants in the MS culture medium supplemented with 1 mgL-1 2,4-D and 1 mgL-1 BAP growth regulators. The sub-cultured calli were placed on a clinostat for 0, 3, 7, and 10 days (2.24 × 10-5 g on the edge of the callus ring). Clinorotation significantly increased callus fresh weight, dry weight, protein, carbohydrate, and proline contents compared to the control, and their maximum contents were obtained after 7 and 10 days. H2O2 level enhanced under clinorotation with a 76.3% rise after 10 days compared to control and positively affected the atropine (77.1%) and scopolamine (69.2%) productions. Hyoscyamine 6-beta hydroxylase and putrescine N-methyltransferase gene expression involved in the tropane alkaloid biosynthesis were upregulated markedly with 14.2 and 17.1-folds increase after 10 days of clinorotation, respectively. The expressions of jasmonic acid, mitogen-activated protein kinase, and ethylene-responsive element-binding transcription factor were upregulated, and the activity of peroxidase and catalase showed a 72.7 and 80% rise after 10 days. These findings suggest that microgravity can enhance callogenesis by stimulating the ROS level, which can impact the antioxidant enzymes, tropane alkaloid formation, and gene expression.


Asunto(s)
Hyoscyamus , Hyoscyamus/genética , Hyoscyamus/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Rotación , Raíces de Plantas/metabolismo , Tropanos/metabolismo , Tropanos/farmacología , Expresión Génica
7.
J Hazard Mater ; 465: 133163, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38064945

RESUMEN

Arsenic (As) is a highly cytotoxic element impairing normal cellular functions, and its bioremediation has become one of the environmental concerns. This study explored the molecular and physiological responses of thyme (Thymus kotschyanus) seedlings to incorporating As (0 and 10 mgl-1) and methyl jasmonate (MJ; 0 and 10 µM) into the culture medium. The MJ treatment reinforced root system and mitigated the As cytotoxicity risk. MJ contributed to hypomethylation, a potential adaptation mechanism for conferring the As tolerance. Two cytochrome P450 monooxygenases, including CYP71D178 and CYP71D180 genes, were upregulated in response to As and MJ. The MJ treatment contributed to up-regulation in the γ-terpinene synthase (TPS) gene, a marker gene in the terpenoid metabolism. The As presence reduced photosynthetic pigments (chlorophylls and carotenoids), while the MJ utilization alleviated the As toxicity. The MJ supplementation increased proline accumulation and soluble phenols. The application of MJ declined the toxicity sign of As on the concentration of proteins. The activities of peroxidase, catalase, and phenylalanine ammonia-lyase (PAL) enzymes displayed an upward trend in response to As and MJ treatments. Taken collective, MJ can confer the As tolerance by triggering DNA hypomethylation, regulating CYPs, and stimulating primary and secondary metabolism, especially terpenoid.


Asunto(s)
Arsénico , Ciclopentanos , Oxilipinas , Thymus (Planta) , Thymus (Planta)/metabolismo , Metabolismo Secundario , Acetatos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Terpenos , ADN
8.
Protoplasma ; 261(4): 735-747, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38291258

RESUMEN

Drought stress is one of the major limiting factors for the production of tomato in Iran. In this study, the efficiency of selenate and Se nanoparticle (SeNP) foliar application on tomato plants was assessed to vestigate mitigating the risk associated with water-deficit conditions. Tomato plants were treated with SeNPs at the concentrations of 0 and 4 mg L-1; after the third sprays, the plants were exposed to water-deficit conditions. The foliar spraying with SeNPs not only improved growth, yield, and developmental switch to the flowering phase but also noticeably mitigated the detrimental risk associated with the water-deficit conditions. Gene expression experiments showed a slight increase in expression of microRNA-172 (miR-172) in the SeNP-treated plants in normal irrigation, whereas miR-172 displayed a downregulation trend in response to drought stress. The bZIP transcription factor and CRTISO genes were upregulated following the SeNP and drought treatments. Drought stress significantly increased the H2O2 accumulation that is mitigated with SeNPs. The foliar spraying with Se or SeNPs shared a similar trend to alleviate the negative effect of drought stress on the membrane integrity. The applied supplements also conferred drought tolerance through noticeable improvements in the non-enzymatic (ascorbate and glutathione) and enzymatic (catalase and peroxidase) antioxidants. The SeNP-mediated improvement in drought stress tolerance correlated significantly with increases in the activity of phenylalanine ammonia-lyase, proline, non-protein thiols, and flavonoid concentrations. SeNPs also improved the fruit quality regarding K, Mg, Fe, and Se concentrations. It was concluded that foliar spraying with SeNPs could mitigate the detrimental risk associated with the water-deficit conditions.


Asunto(s)
Antioxidantes , Sequías , MicroARNs , Selenio , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/efectos de los fármacos , MicroARNs/genética , Selenio/farmacología , Antioxidantes/metabolismo , Nanopartículas/química , Metabolismo Secundario/efectos de los fármacos , Metabolismo Secundario/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Sequía
9.
Environ Sci Pollut Res Int ; 31(11): 16485-16496, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38319425

RESUMEN

The underlying mechanisms through which silicon oxide nanoparticles (SiNPs) can confer salinity resistance to plants are poorly understood. This study explored the efficacy of supplementing nutrient solution with SiNPs (20-30 nm; 10 mg kg-1 soil) to stimulate metabolism and alleviate the risks associated with salinity (0.73 g kg-1 soil) in basil seedlings. For this purpose, variations in photosynthetic indices, proline osmoprotectant, antioxidant markers, phenylpropanoid metabolism, and transcriptional behaviors of genes were investigated. SiNPs increased shoot fresh weight (38%) and mitigated the risk associated with the salinity stress by 14%. SiNPs alleviated the inhibitory effects of salinity on the total chlorophyll concentration by 15%. The highest increase (twofold) in proline content was recorded in the SiNP-treated seedlings grown under salinity. The nano-supplement enhanced the activity of enzymatic antioxidants, including peroxidase (2.5-fold) and catalase (4.7-fold). SiNPs induced the expression of gamma-cadinene synthase (CDS) and caffeic acid O-methyltransferase (COMT) genes by 6.5- and 18.3-fold, respectively. SiNPs upregulated the eugenol synthase (EGS1) and fenchol synthase (FES) genes by six- and nine-fold, respectively. Salinity transcriptionally downregulated the geraniol synthase (GES) gene, while this gene displayed an upward trend in response to SiNPs by eight-fold. The nano-supplement transcriptionally stimulated the R-linalool synthase (LIS) gene by 3.3-fold. The terpinolene synthase (TES) gene displayed a similar trend to that of the GES gene. The highest expression (25-fold) of the phenylalanine ammonia-lyase (PAL) gene was recorded in seedlings supplemented with SiNPs. The physiological and molecular assessments demonstrated that employing SiNPs is a sustainable strategy for improving plant primary/secondary metabolism and crop protection.


Asunto(s)
Nanopartículas , Ocimum basilicum , Ocimum basilicum/metabolismo , Metabolismo Secundario , Protección de Cultivos , Antioxidantes/metabolismo , Estrés Salino , Plantones , Prolina/metabolismo , Suelo , Expresión Génica
10.
Sci Rep ; 14(1): 16692, 2024 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030347

RESUMEN

In this study, zinc oxide nanoparticles (Zn-NPs) were prepared by the green synthesis method and loaded inside niosomes as a drug release system and their physicochemical and biological properties were determined. Zn-NPs were prepared by the eco-friendly green strategy, the structure, and morphological properties were studied and loaded into niosomes. Subsequently, different formulations of niosomes containing Zn-NPs were prepared and the optimal formulation was used for biological studies. Scanning electron microscope (SEM) and dynamic light scattering (DLS) were used to investigate the morphology and size of nanoparticles. Fourier transform infrared spectroscopy (FTIR) and UV-Vis were used to confirm the synthesis of Zn-NPs. Energy dispersive X-ray spectrometer (EDS) determined the elemental analysis of the Zn-NPs synthesis solution and the crystalline structure of Zn-NPs was analysed by XRD (X-Ray diffraction). Furthermore, Zn-NPs were loaded inside the niosomes, and their structural characteristics, entrapment efficiency (EE%), the release profile of Zn-NPs, and their stability also were assessed. Moreover, its antimicrobial properties against some microbial pathogens, its effect on the expression of biofilm genes, and its anticancer activity on the breast cancer cell lines were also determined. To study the cytocompatibility, exposure of niosomes against normal HEK-293 cells was carried out. In addition, the impact of niosomes on the expression of genes involved in the apoptosis (Bcl2, Casp3, Casp9, Bax) at the mRNA level was measured. Our findings revealed that the Zn-NPs have a round shape and an average size of 27.60 nm. Meanwhile, UV-Vis, FTIR, and XRD results confirmed the synthesis of Zn-NPs. Also, the EE% and the size of the optimized niosomal formulation were 31.26% and 256.6 ± 12 nm, respectively. The release profile showed that within 24 h, 26% of Zn-NPs were released from niosomes, while in the same period, 99% of free Zn-NPs were released, which indicates the slow release of Zn-NPs from niosomes. Antimicrobial effects exhibited that niosomes containing Zn-NPs had more significant antimicrobial and anti-biofilm effects than Zn-NPs alone, the antimicrobial and anti-biofilm effects increased 2 to 4 times. Cytotoxic effects indicated that when Zn-NPs are loaded into niosomes, the anticancer activity increases compared to Zn-NPs alone and has low cytotoxicity on cancer cells. Niosomes containing ZnNPs increased the apoptosis-related gene expression level and reduced the Bcl2 genes. In general, the results show that niosomes can increase the biological effects of free Zn-NPs and therefore can be a suitable carrier for targeted delivery of Zn-NPs.


Asunto(s)
Liposomas , Nanopartículas del Metal , Óxido de Zinc , Humanos , Óxido de Zinc/química , Óxido de Zinc/farmacología , Liposomas/química , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Biopelículas/efectos de los fármacos , Tamaño de la Partícula , Línea Celular Tumoral , Células MCF-7 , Apoptosis/efectos de los fármacos , Células HEK293 , Espectroscopía Infrarroja por Transformada de Fourier , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos/métodos
11.
Environ Pollut ; 362: 124917, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251123

RESUMEN

This study investigated the efficacy of incorporating nitric oxide (NO; 10 µM) and ascorbic acid (Asc; 10 µM) into the culture medium to confer cadmium (Cd; 5 µM) tolerance in thyme (Zataria multiflora). The phytotoxicity of Cd resulted in a decrease in shoot biomass, which NO or Asc mitigated. Adding Asc and NO to the culture medium was associated with substantial DNA hypomethylation. The NO + Cd and Asc + Cd treatments were accompanied by an increase in the unmethylation percentages, about 3-fold higher than the control. The hemi-methylation percentages in the Asc-supplemented seedlings also displayed an upward trend. The transcriptional upregulation in the γ-terpinene synthase (TPS) gene resulted from the applied elicitors, especially NO. In response to the NO and Asc treatments, the transcription of two cytochrome P450 monooxygenase genes (CYP71D178 and CYP71D180) went up. Incorporating Asc or NO into the culture medium enhanced the concentrations of proline, carvacrol, and thymol metabolites. Employing NO or Asc mitigated the 43% decrease in protein content due to the Cd cytotoxicity. The NO and Asc applications improved the activity of the phenylalanine ammonia-lyase (PAL) enzyme. NO and Asc utilization increased the accumulation of flavonoids. NO and Asc also up-regulated the activities of two enzymatic antioxidants (catalase and peroxidase). Collectively, this study provided novel insight into how Asc or NO confers Cd tolerance by epigenetically remodeling DNA methylation, transcriptionally up-regulating terpenoid and phenylpropanoid metabolism, increasing proline concentration, and improving antioxidants.

12.
J Photochem Photobiol B ; 254: 112902, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569457

RESUMEN

The effect of low artificial Ultraviolet (UV) on the DNA methylation remains controversial. This study addresses how differential photoperiods of UV radiation affect the biochemical and molecular behaviors of Cannabis indica cell suspension cultures. The cell suspensions were illuminated with the compact fluorescent lamps (CFL), emitting a combination of 10% UVB, 30% UVA, and the rest visible wavelengths for 0, 4, 8, and 16 h. The applied photoperiods influenced cell morphological characteristics. The 4 h photoperiod was the most effective treatment for improving biomass, growth index and cell viability percentage while these indices remained non-significant in the 16 h treatment. The methylation-sensitive amplified polymorphism (MASP) assay revealed that the UV radiation was epigenetically accompanied by DNA hypermethylation. The light-treated cells significantly displayed higher relative expression of the cannabidiolic| acid synthase (CBDAS) and delta9-tetrahydrocannabinolic acid synthase (THCAS) genes about 4-fold. The expression of the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes exhibited an upward trend in response to the UV radiation. The light treatments also enhanced the proline content and protein concentration. The 4 h illumination was significantly capable of improving the cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) concentrations, in contrast with 16 h. By increasing the illumination exposure time, the activity of the phenylalanine ammonia-lyase (PAL) enzyme linearly upregulated. The highest amounts of the phenylpropanoid derivatives were observed in the cells cultured under the radiation for 4 h. Taken collective, artificial UV radiation can induce DNA methylation modifications and impact biochemical and molecular differentiation in the cell suspensions in a photoperiod-dependent manner.


Asunto(s)
Cannabinoides , Cannabis , Cannabis/genética , Cannabis/química , Cannabinoides/farmacología , Dronabinol/farmacología , Metilación de ADN , Rayos Ultravioleta , Proliferación Celular
13.
Plant Physiol Biochem ; 202: 107975, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37634333

RESUMEN

Atropine is a well-known tropane alkaloid commonly employed in medicine class called anticholinergics. This study intends to address biochemical and molecular responses of Datura inoxia calluses to fortifying culture medium with carboxylic acid-functionalized multi-walled carbon nanotubes (COOH-MWCNTs). The application of MWCNTs influenced callogenesis performance and biomass in a dose-dependent manner. The MWCNT at 5 mgL-1 resulted in the highest biomass of calluses by 57%. While, MWCNTs at high concentrations were accompanied by cytotoxicity. On the other hand, MWCNTs at concentrations above 100 mgL-1 exhibited cytotoxicity, decreased callogenesis performance, and reduced Atropine biosynthesis. The MWCNTs increased the activity of phenylalanine ammonia-lyase (PAL) and catalase enzymes. The concentrations of proline and soluble phenols displayed upward trends in response to using MWCNTs. According to the HPLC assessment, enriching culture medium with MWCNTs at 5 mgL-1 elicited Atropine production in calluses by 64%. The quantitative PCR assessment referred to the upregulation in the transcription of the PAL gene. The expression of ornithine decarboxylase (ODC) and putrescine N-methyltransferase 1 (PMT) genes were also upregulated in calluses cultured in a medium supplemented with MWCNTs. Methylation Sensitive Amplification Polymorphism (MSAP) technique indicated that employing MWCNTs altered the DNA methylation profile, reflecting epigenetic modification. Overall, engineering plant cells with MWCNTs as a nano-elicitor can be suggested for large-scale synthesis of industrially-valuable secondary metabolites.


Asunto(s)
Datura , Nanotubos de Carbono , Metilación de ADN/genética , Atropina/farmacología , ADN , Ácidos Carboxílicos , Citosina
14.
Protoplasma ; 260(1): 159-170, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35503387

RESUMEN

The current decade has witnessed notable advancement towards the utilization of non-thermal (cold) plasma in multidisciplinary fields such as plant sciences. This study intends to validate whether cold plasma contributes to improving callogenesis performance and eliciting the production of cannabinoids in cannabis. The cannabis-derived calli were treated with plasma at different exposure times, including 0, 60, 120, and 180 s. The plasma priming improved the callogenesis performance and callus biomass by an average of 46.6%. The molecular assessment (MSAP method) validated how the plasma priming is epigenetically associated with variation in DNA methylome in the cannabis calli. The cold plasma treatments transcriptionally upregulated the expression of WRKY1 and ERF1B transcription factors by averages of 3.5- and 3.8-fold. The plasma treatment also stimulated the transcription of OLS, OAC, CBGAS, CBDAS, and THCAS genes involved in the biosynthesis of cannabinoids. The HPLC assessment proved the high potency of cold plasma to enhance the synthesis of cannabinoids, including Cannabigerol (CBG), Cannabidiol (CBD), and cannabinol (CBN). The plasma-primed calli contained higher concentrations of proteins (56%), proline (38%), and soluble phenols (40%). The activities of peroxidase and catalase enzymes showed a similar upward trend in response to the plasma. The profound increase in the concentrations of soluble sugars resulted from the plasma treatments. The plasma priming of calli contributed to the significant upregulation in the activity of the phenylalanine ammonia-lyase enzyme. This biological assessment study validates the high potency of plasma priming to elicit the biosynthesis of cannabinoids in cannabis calli.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Gases em Plasma , Epigenoma , Factores de Transcripción/genética , Cannabis/genética , Cannabinol
15.
Protoplasma ; 260(6): 1515-1525, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37233753

RESUMEN

Few investigations have tested the practical use of cold plasma as a novel technology to meet the requirements in the plant cell and tissue culture field. To fill the knowledge gap, we intend to respond to the question of whether plasma priming influenced DNA ultrastructure and the production of atropine (a tropane alkaloid) in Datura inoxia. Calluses were treated with the corona discharge plasma at time durations ranging from 0 to 300 s. Significant increases (about 60%) in biomass were observed in the plasma-primed calluses. The plasma priming of calluses enhanced the accumulation of atropine about 2-fold. The plasma treatments increased proline concentrations and soluble phenols. The drastic increases in the activity of the phenylalanine ammonia-lyase (PAL) enzyme resulted from the applied treatments. Likewise, the plasma treatment of 180 s upregulated the expression of the PAL gene by 8-fold. Also, the expression of the ornithine decarboxylase (ODC) and tropinone reductase I (TR I) genes were stimulated by 4.3-fold and 3.2-fold, respectively, in response to the plasma treatment. The putrescine N-methyltransferase gene displayed a similar trend to that of TR I and ODC genes following the plasma priming. Methylation sensitive amplification polymorphism method was employed to explore the plasma-associated epigenetic changes in DNA ultrastructure. The molecular assessment referred to DNA hypomethylation, validating an epigenetic response. This biological assessment study validates the hypothesis that plasma priming of callus is an efficient, cost-effective, and eco-friendly tool to enhance callogenesis efficiency, elicit metabolism, affect gene regulation, and modify chromatin ultrastructure in D. inoxia.

16.
Protoplasma ; 260(3): 839-851, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36318315

RESUMEN

Limited studies have been conducted on the role of microRNAs (miRs) and transcription factors in regulating plant cell responses to nanoparticles. This study attempted to address whether the foliar application of zinc oxide nanoparticles (ZnONPs; 0, 10, 25, and 50 mgL-1) can affect miRs, gene expression, and wheat grain quality. The seedlings were sprayed with ZnONPs (0, 10, 25, and 50 mgL-1) or bulk counterpart (BZnO) five times at 72 h intervals. The application of ZnONPs at 10 mgL-1 increased the number of spikelets and seed weight, while the nano-supplement at 50 mgL-1 was accompanied by severe restriction on developing spikes and grains. ZnONPs, in a dose-dependent manner, transcriptionally influenced miR156 and miR171. The expression of miR171 showed a similar trend to that of miR156. The ZnONPs at optimum concentration upregulated the NAM transcription factor and sucrose transporter (SUT) at transcriptional levels. However, the transcription of both NAM and SUT genes displayed a downward trend in response to the toxic dose of ZnONPs (50 mgL-1). Utilization of ZnONPs increased proline and total soluble phenolic content. Monitoring the accumulation of carbohydrates, including fructan, glucose, fructose, and sucrose, revealed that ZnONPs at 10 mgL-1 modified the source/sink communication and nutrient remobilization. The molecular and physiological data revealed that the expression of miR156 and miR171 is tightly linked to seed grain development, remobilization of carbohydrates, and genes involved in nutrient transportation. This study establishes a novel strategy for obtaining higher yields in crops. This biological risk assessment investigation also displays the potential hazard of applying ZnONPs at the flowering developmental phase.


Asunto(s)
MicroARNs , Óxido de Zinc , Carbohidratos , Grano Comestible , MicroARNs/metabolismo , Semillas , Sacarosa/metabolismo , Triticum/metabolismo , Óxido de Zinc/metabolismo , Nanopartículas del Metal , Proteínas Represoras/metabolismo , Proteínas de Plantas/metabolismo
17.
Heliyon ; 9(11): e22144, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034643

RESUMEN

Titanium dioxide nanoparticles (TiO2NPs) are widely used in agriculture in order to increase the yield and growth characteristics of plants. This study investigated the effects of TiO2NPs on photosynthetic pigments and several biochemical activities and antioxidant enzymes of the Vitex plant. Different concentrations of nanoparticles (0, 200, 400, 600 and 800 ppm) at five levels were sprayed on Vitex plants on the 30th day of the experiment. TiO2NPs at different concentrations had positive effects on root and shoot dry weight and a negative effect on leaf dry weight. The amount of chlorophyll increased with the concentration of TiO2NPs; however, the amount of chlorophyll b showed a decreasing trend while the total chlorophyll had a constant trend. The highest amount of soluble sugar was obtained in the treatment of 200 ppm nanoparticles. The application of TiO2NPs did not have any effect on the content of proline and soluble proteins of Vitex plant. The effects of foliar TiO2NPs, compared to the control, showed a significant increase in the activity of antioxidant enzymes. In general, TiO2NPs had a favorable effect on dry matter production and some antioxidant and biochemical properties of the Vitex plant.

18.
Plant Physiol Biochem ; 186: 157-168, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35849945

RESUMEN

In vitro plant culture paves the way for meeting the industrial demand of pharmaceutically valuable secondary metabolites. This study intends to monitor how callus cells of Cannabis indica respond to the simulated microgravity (clinorotation; a Man-made technology). Callus initiation resulted from the culture of the leaf explant in a medium supplemented with kinetin (0.5 mgL-1) and 2, 4-D (2 mgL-1). Calli were treated with microgravity at three exposure times (0, 3, and 5 days). The microgravity treatments increased callus biomass about 2.5-fold. The clinorotation treatments transcriptionally induced the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes about 6.2-fold. The tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) genes displayed a similar upward trend in response to microgravity. The applied treatments also stimulated the expression of the ethylene-responsive element-binding proteins (ERF1B) and WRKY1 transcription factors by an average of 7.6-fold. Moreover, the simulated microgravity triggered epigenetic modification in the DNA methylation profile. The HPLC-based assessment validated the high efficacy of the clinorotation treatments to increase the concentration of cannabinoids, including Cannabigerol (CBG) and Cannabidiol (CBD). However, the clinorotated calli contained a lower concentration of Tetrahydrocannabinol (THC) than the control group. The microgravity treatments increased concentrations of proline (79%), soluble sugars (61.3%), and proteins (21.4%) in calli. The biochemical assessment revealed that the clinorotation treatments slightly increased H2O2 concentration. The upregulation in the activities of peroxidase, catalase, and phenylalanine ammonia-lyase enzymes resulted from the microgravity treatments. Both HPLC and molecular assessments validated the significant efficacy of microgravity to enhance the production of cannabinoids.


Asunto(s)
Cannabinoides , Cannabis , Ingravidez , Cannabis/química , Cannabis/genética , Dronabinol , Humanos , Peróxido de Hidrógeno
19.
Int J Stem Cells ; 15(2): 183-194, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34711698

RESUMEN

Background and Objectives: Retinal stem cells (RSCs) resided in ciliary epithelium have shown to possess a high capacity to self-renew and differentiate into retinal cells. RSCs could be induced to differentiate when they are exposed to stimuli like natural compounds and suitable contexts such as biomaterials. The aim of this study was to examine the effects of Retinol and alginate/gelatin-based scaffolds on differentiation potential of mesenchymal stem cells (MSCs) originated from mouse ciliary epithelium. Methods and Results: MSCs were extracted from mouse ciliary epithelium, and their identity was verified by detecting specific surface antigens. To provide a three-dimensional in vitro culture system, 2% alginate, 0.5% gelatin and the mixed alginate-gelatin hydrogels were fabricated and checked by SEM. Retinol treatment was performed on MSCs expanded on alginate/gelatin hydrogels and the survival rate and the ability of MSCs to differentiate were examined through measuring expression alterations of retina-specific genes by ICC and qPCR. The cell population isolated from ciliary epithelium contained more than 93.4% cells positive for MSC-specific marker CD105. Alginate/gelatin scaffolds showed to provide an acceptable viability (over 70%) for MSC cultures. Retinol treatment could induce a high expression of rhodopsin protein in MSCs expanded in alginate and alginate-gelatin mixtures. An elevated presentation of Nestin, RPE65 and Rhodopsin genes was detected in retinol-treated cultures expanded on alginate and alginate-gelatin scaffolds. Conclusions: The results presented here elucidate that retinol treatment of MSCs grown on alginate scaffolds would promote the mouse ciliary epithelium-derived MSCs to differentiate towards retinal neurons.

20.
Environ Sci Pollut Res Int ; 29(23): 34725-34737, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35041168

RESUMEN

Arsenic (As) is known to be one of the most toxic metalloids for humans and plants; however, little is known about the use of silicon (Si) and titanium dioxide (TiO2) nanoparticles (NPs) in reducing As toxicity in rice (Oryza sativa L.). The experiment was conducted to examine the effects of Si-NPs (50 and 100 mg/L), TiO2-NPs (25 and 50 mg/L) and As (50 µM) on growth, photosynthetic pigments, antioxidant defense system, glyoxalase system, expression of Si/As transporters, and genes involved in As sequestration in rice under hydroponic conditions. The results revealed that Si- and TiO2-NPs by upregulating the activity of antioxidant enzymes and glyoxalase cycle reduced hydrogen peroxide, methylglyoxal, malondialdehyde, and electrolyte leakage, and thus protected the photosynthetic apparatus and improved plant growth under As stress. By increasing the expression of GSH1, PCS, and ABC1 genes, Si- and TiO2-NPs increased leaf and root accumulation of glutathione and phytochelatins and sequestered As in vacuoles, which protected plant cells from As toxicity. Si-NPs diminished As uptake and increased Si uptake in As-exposed rice plants by modulating the expression of Si/As transporters (Lsi1, Lsi2, and Lsi6). The results depicted that 100 mg/L Si-NPs treatment had the highest positive effect on plant growth and tolerance under As stress compared to other treatments. In general, Si- and TiO2-NPs augmented the growth of rice under As stress through different strategies, which can be used to design effective fertilizers to enhance the crop growth and yield in areas contaminated with toxic metals.


Asunto(s)
Arsénico , Nanopartículas , Oryza , Antioxidantes/metabolismo , Arsénico/metabolismo , Humanos , Fitoquelatinas/metabolismo , Silicio/metabolismo , Silicio/farmacología , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA