Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 11(1): 3442, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564058

RESUMEN

Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair. Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining five different blinded, fully counter-balanced treatment trials for different acute anti-inflammatory treatments for cervical spinal cord injury in rats. Multi-dimensional discovery, using topological data analysis (TDA) and principal components analysis (PCA) revealed that only one showed consistent multidimensional syndromic benefit: intrathecal application of recombinant soluble TNFα receptor 1 (sTNFR1), which showed an inverse-U dose response efficacy. Using the optimal acute dose, we showed that clinically-relevant 90 min delayed treatment profoundly affected multiple biological indices of NI in the first 48 h after injury, including reduction in pro-inflammatory cytokines and gene expression of a coherent complex of acute inflammatory mediators and receptors. Further, a 90 min delayed bolus dose of sTNFR1 reduced the expression of NI markers in the chronic perilesional spinal cord, and consistently improved neurological function over 6 weeks post SCI. These results provide validation of a novel strategy for precision preclinical drug discovery that is likely to improve translation in the difficult landscape of CNS trauma, and confirm the importance of TNFα signaling as a therapeutic target.


Asunto(s)
Inteligencia Artificial , Modelos Neurológicos , Traumatismos de la Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Inyecciones Espinales , Ratas Long-Evans , Receptores Tipo I de Factores de Necrosis Tumoral/farmacología , Proteínas Recombinantes/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología
2.
Brain ; 131(Pt 6): 1464-77, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18490361

RESUMEN

In multiple sclerosis, demyelination of the CNS axons is associated with axonal injury and degeneration, which is now accepted as the major cause of neurological disability in the disease. Although the kinetics and the extent of axonal damage have been described in detail, the mechanisms by which it occurs are as yet unclear; one suggestion is failure of remyelination. The goal of this study was to test the hypothesis that failure of prompt remyelination contributes to axonal degeneration following demyelination. Remyelination was inhibited by exposing the brain to 40 Gy of X-irradiation prior to cuprizone intoxication and this resulted in a significant increase in the extent of axonal degeneration and loss compared to non-irradiated cuprizone-fed mice. To exclude the possibility that this increase was a consequence of the X-irradiation and to highlight the significance of remyelination, we restored remyelinating capacity to the X-irradiated mouse brain by transplanting of GFP-expressing embryo-derived neural progenitors. Restoring the remyelinating capacity in these mice resulted in a significant increase in axon survival compared to non-transplanted, X-irradiated cuprizone-intoxicated mice. Our results support the concept that prompt remyelination protects axons from demyelination-associated axonal loss and that remyelination failure contributes to the axon loss that occurs in multiple sclerosis.


Asunto(s)
Axones/patología , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/fisiología , Regeneración Nerviosa , Animales , Cuerpo Calloso/patología , Cuprizona , Enfermedades Desmielinizantes , Imagen de Difusión por Resonancia Magnética , Femenino , Proteínas Fluorescentes Verdes/análisis , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Esclerosis Múltiple/patología , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Trasplante de Células Madre , Rayos X
3.
Cell Transplant ; 17(7): 865-73, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19044212

RESUMEN

The adult bone marrow contains a population of multipotent mesenchymal stromal cells (MSCs), defined by plastic adherence, expression of stromal cell surface markers, and differentiation into mesenchymal lineages. There has been much interest in the possible therapeutic use of MSCs in the treatment of demyelinating diseases of the central nervous system. One therapeutic possibility is that these cells may be able to remyelinate when directly injected into the demyelinated spinal cord. Here we examine the effects of direct transplantation of green fluorescent protein (GFP)-labeled MSCs into a model of focal spinal cord demyelination induced by ethidium bromide. We demonstrate that direct intralesional injection of undifferentiated MSCs does not lead to remyelination. Furthermore, we report that transplanted MSCs migrate into areas of normal tissue, deposit collagen, and are associated with axonal damage. These findings support the need for further experimental evaluation of the safety and efficacy of direct parenchymal injection of MSCs into demyelinated lesions and highlight an important issue regarding potential clinical consequences of culture heterogeneity of MSCs between centers.


Asunto(s)
Enfermedades Desmielinizantes , Trasplante de Células Madre Mesenquimatosas , Médula Espinal , Animales , Biomarcadores/metabolismo , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/terapia , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología , Médula Espinal/patología
4.
J Neurol Sci ; 265(1-2): 43-6, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17826797

RESUMEN

The relative merits of endogenous and exogenous oligodendrocyte progenitor cells (OPCs) for remyelination are compared in terms of their ability to repopulate OPC-depleted tissue and generate remyelinating oligodendrocytes. Exogenous neonatal OPCs can repopulate OPC-depleted tissue 5-10 times faster than endogenous cells and as a result are capable of more extensive remyelination. Both endogenous and exogenous cells will only repopulate normal tissue if there is extensive depletion of the local OPC population and both show reduced ability to generate remyelinating cells in the absence of acute inflammation. When endogenous OPCs are depleted by X-irradiation during cuprizone intoxication, where there is a combination of astrocytosis and acute demyelination, endogenous but not exogenous embryo-derived OPCs fail to repopulate the OPC-depleted cortex.


Asunto(s)
Enfermedades Desmielinizantes/terapia , Regeneración Nerviosa/fisiología , Oligodendroglía/fisiología , Células Madre/fisiología , Animales , Humanos , Trasplante de Células Madre
5.
J Neuroimmunol ; 175(1-2): 69-76, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16626812

RESUMEN

Axon loss is recognised as a significant contributor to the progression of the disability associated with multiple sclerosis. Although evidence of axon damage is found in areas of chronic demyelination it is more frequently seen in association with acute demyelination. This study compares the incidence of axon degeneration associated with the areas undergoing demyelination in young adult (8-10 weeks) and aged (6-7 months) C57BL/6 mice in cuprizone intoxication; a widely used model of demyelination. The incidence of axon transection, as indicated by the presence of SMI 32 positive axonal spheroids, and evidence of axon loss in the medial corpus callosum, were significantly greater in aged mice, as was the magnitude of the macrophage and astrocyte response to demyelination. Aged C57BL/6 mice are thus more prone to axon degeneration in association with demyelination than young adult mice. A retrospective study indicated that the incidence of axon degeneration was much higher in C57BL/6 mice than in the Swiss albino mice used in the early cuprizone intoxication studies which were fed much higher doses of cuprizone. These results indicate both a genetic and age susceptibility to demyelination-associated axon transection.


Asunto(s)
Envejecimiento/inmunología , Axones/inmunología , Axones/patología , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Envejecimiento/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/ultraestructura , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/inmunología , Cuerpo Calloso/patología , Cuerpo Calloso/ultraestructura , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/fisiopatología , Femenino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA