Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(1): 143-156, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995985

RESUMEN

Mechanical forces have been proposed to modulate organ growth, but a molecular mechanism that links them to growth regulation in vivo has been lacking. We report that increasing tension within the cytoskeleton increases Drosophila wing growth, whereas decreasing cytoskeletal tension decreases wing growth. These changes in growth can be accounted for by changes in the activity of Yorkie, a transcription factor regulated by the Hippo pathway. The influence of myosin activity on Yorkie depends genetically on the Ajuba LIM protein Jub, a negative regulator of Warts within the Hippo pathway. We further show that Jub associates with α-catenin and that its localization to adherens junctions and association with α-catenin are promoted by cytoskeletal tension. Jub recruits Warts to junctions in a tension-dependent manner. Our observations delineate a mechanism that links cytoskeletal tension to regulation of Hippo pathway activity, providing a molecular understanding of how mechanical forces can modulate organ growth.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Proteínas con Dominio LIM/metabolismo , Transducción de Señal , Alas de Animales/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos , Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/metabolismo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
2.
Cell ; 150(4): 669-70, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901800

RESUMEN

The Hippo-YAP pathway regulates organ size by modulating cell proliferation and apoptosis. Yu et al. now reveal that G-protein-coupled receptors act upstream of the transcriptional coactivators YAP/TAZ. This study reinforces the connection between the actin cytoskeleton and Hippo pathway activity and identifies a class of secreted extracellular regulators of YAP/TAZ activity.

3.
Annu Rev Genet ; 52: 65-87, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30183404

RESUMEN

Hippo signaling is an evolutionarily conserved network that has a central role in regulating cell proliferation and cell fate to control organ growth and regeneration. It promotes activation of the LATS kinases, which control gene expression by inhibiting the activity of the transcriptional coactivator proteins YAP and TAZ in mammals and Yorkie in Drosophila. Diverse upstream inputs, including both biochemical cues and biomechanical cues, regulate Hippo signaling and enable it to have a key role as a sensor of cells' physical environment and an integrator of growth control signals. Several components of this pathway localize to cell-cell junctions and contribute to regulation of Hippo signaling by cell polarity, cell contacts, and the cytoskeleton. Downregulation of Hippo signaling promotes uncontrolled cell proliferation, impairs differentiation, and is associated with cancer. We review the current understanding of Hippo signaling and highlight progress in the elucidation of its regulatory mechanisms and biological functions.


Asunto(s)
Comunicación Celular/genética , Movimiento Celular/genética , Regulación de la Expresión Génica/genética , Uniones Intercelulares/genética , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular , Polaridad Celular/genética , Proliferación Celular/genética , Citoesqueleto/genética , Drosophila/genética , Proteínas de Drosophila/genética , Vía de Señalización Hippo , Humanos , Ratones , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
4.
J Cell Sci ; 134(6)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33558314

RESUMEN

Hippo signaling mediates influences of cytoskeletal tension on organ growth. TRIP6 and LIMD1 have each been identified as being required for tension-dependent inhibition of the Hippo pathway LATS kinases and their recruitment to adherens junctions, but the relationship between TRIP6 and LIMD1 was unknown. Using siRNA-mediated gene knockdown, we show that TRIP6 is required for LIMD1 localization to adherens junctions, whereas LIMD1 is not required for TRIP6 localization. TRIP6, but not LIMD1, is also required for the recruitment of vinculin and VASP to adherens junctions. Knockdown of TRIP6 or vinculin, but not of LIMD1, also influences the localization of myosin and F-actin. In TRIP6 knockdown cells, actin stress fibers are lost apically but increased basally, and there is a corresponding increase in the recruitment of vinculin and VASP to basal focal adhesions. Our observations identify a role for TRIP6 in organizing F-actin and maintaining tension at adherens junctions that could account for its influence on LIMD1 and LATS. They also suggest that focal adhesions and adherens junctions compete for key proteins needed to maintain attachments to contractile F-actin.


Asunto(s)
Actinas , Uniones Adherentes , Citoesqueleto de Actina , Citoesqueleto , Adhesiones Focales , Vinculina/genética
5.
Cell ; 132(2): 177-9, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18243091

RESUMEN

Notch is a key signaling protein mediating cell-fate decisions during development. In this issue, Acar et al. (2008) describe a new gene called rumi that is required for Notch signaling in Drosophila. This gene encodes an O-glucosyltransferase that attaches glucose sugars to serine residues in the multiple EGF domains of the extracellular region of Notch. This modification by Rumi likely influences Notch folding and trafficking.


Asunto(s)
Proteínas de Drosophila , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Alelos , Animales , Catálisis , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiología , Eliminación de Gen , Regulación de la Expresión Génica , Genes de Insecto , Pruebas Genéticas , Glucosa/metabolismo , Glucosiltransferasas/genética , Glicosilación , Modelos Moleculares , Estructura Terciaria de Proteína , Serina/metabolismo , Temperatura
6.
Development ; 146(14)2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358536

RESUMEN

In human, mutations of the protocadherins FAT4 and DCHS1 result in Van Maldergem syndrome, which is characterised, in part, by craniofacial abnormalities. Here, we analyse the role of Dchs1-Fat4 signalling during osteoblast differentiation in mouse. We show that Fat4 and Dchs1 mutants mimic the craniofacial phenotype of the human syndrome and that Dchs1-Fat4 signalling is essential for osteoblast differentiation. In Dchs1/Fat4 mutants, proliferation of osteoprogenitors is increased and osteoblast differentiation is delayed. We show that loss of Dchs1-Fat4 signalling is linked to increased Yap-Tead activity and that Yap is expressed and required for proliferation in osteoprogenitors. In contrast, Taz is expressed in more-committed Runx2-expressing osteoblasts, Taz does not regulate osteoblast proliferation and Taz-Tead activity is unaffected in Dchs1/Fat4 mutants. Finally, we show that Yap and Taz differentially regulate the transcriptional activity of Runx2, and that the activity of Yap-Runx2 and Taz-Runx2 complexes is altered in Dchs1/Fat4 mutant osteoblasts. In conclusion, these data identify Dchs1-Fat4 as a signalling pathway in osteoblast differentiation, reveal its crucial role within the early Runx2 progenitors, and identify distinct requirements for Yap and Taz during osteoblast differentiation.


Asunto(s)
Cadherinas/fisiología , Osteoblastos/fisiología , Osteogénesis/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Células Cultivadas , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Deformidades Congénitas del Pie/genética , Deformidades Congénitas del Pie/patología , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/patología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Inestabilidad de la Articulación/genética , Inestabilidad de la Articulación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Transducción de Señal/genética
7.
PLoS Genet ; 15(1): e1007955, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30699121

RESUMEN

The Drosophila protocadherins Dachsous and Fat regulate growth and tissue polarity by modulating the levels, membrane localization and polarity of the atypical myosin Dachs. Localization to the apical junctional membrane is critical for Dachs function, and the adapter protein Vamana/Dlish and palmitoyl transferase Approximated are required for Dachs membrane localization. However, how Dachs levels are regulated is poorly understood. Here we identify the early girl gene as playing an essential role in Fat signaling by limiting the levels of Dachs protein. early girl mutants display overgrowth of the wings and reduced cross vein spacing, hallmark features of mutations affecting Fat signaling. Genetic experiments reveal that it functions in parallel with Fat to regulate Dachs. early girl encodes an E3 ubiquitin ligase, physically interacts with Dachs, and regulates its protein stability. Concomitant loss of early girl and approximated results in accumulation of Dachs and Vamana in cytoplasmic punctae, suggesting that it also regulates their trafficking to the apical membrane. Our findings establish a crucial role for early girl in Fat signaling, involving regulation of Dachs and Vamana, two key downstream effectors of this pathway.


Asunto(s)
Aciltransferasas/genética , Moléculas de Adhesión Celular/genética , Proteínas de Drosophila/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Polaridad Celular/genética , Drosophila melanogaster/genética , Humanos , Proteínas de la Membrana/genética , Mutación , Miosinas/genética , Transporte de Proteínas/genética , Transducción de Señal , Alas de Animales/crecimiento & desarrollo
8.
J Cell Sci ; 132(7)2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30837288

RESUMEN

Adherens junctions provide attachments between neighboring epithelial cells and a physical link to the cytoskeleton, which enables them to sense and transmit forces and to initiate biomechanical signaling. Examination of the Ajuba LIM protein Jub in Drosophila embryos revealed that it is recruited to adherens junctions in tissues experiencing high levels of myosin activity, and that the pattern of Jub recruitment varies depending upon how tension is organized. In cells with high junctional myosin, Jub is recruited to puncta near intercellular vertices, which are distinct from Ena-containing puncta, but can overlap Vinc-containing puncta. We identify roles for Jub in modulating tension and cellular organization, which are shared with the cytohesin Step, and the cytohesin adapter Sstn, and show that Jub and Sstn together recruit Step to adherens junctions under tension. Our observations establish Jub as a reporter of tension experienced at adherens junctions, and identify distinct types of tension-dependent and tension-independent junctional complexes. They also identify a role for Jub in mediating a feedback loop that modulates the distribution of tension and cellular organization in epithelia.


Asunto(s)
Uniones Adherentes/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas con Dominio LIM/metabolismo , Animales , Cadherinas/metabolismo , Adhesión Celular/genética , Drosophila , Proteínas de Drosophila/genética , Epitelio/embriología , Femenino , Proteínas con Dominio LIM/genética , Masculino , Mecanotransducción Celular , Miosinas/metabolismo , Dominios Proteicos
9.
J Cell Sci ; 132(5)2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30659113

RESUMEN

The Hippo signaling network controls organ growth through YAP family transcription factors, including the Drosophila Yorkie protein. YAP activity is responsive to both biochemical and biomechanical cues, with one key input being tension within the F-actin cytoskeleton. Several potential mechanisms for the biomechanical regulation of YAP proteins have been described, including tension-dependent recruitment of Ajuba family proteins, which inhibit kinases that inactivate YAP proteins, to adherens junctions. Here, we investigate the mechanism by which the Drosophila Ajuba family protein Jub is recruited to adherens junctions, and the contribution of this recruitment to the regulation of Yorkie. We identify α-catenin as the mechanotransducer responsible for tension-dependent recruitment of Jub by identifying a region of α-catenin that associates with Jub, and by identifying a region, which when deleted, allows constitutive, tension-independent recruitment of Jub. We also show that increased Jub recruitment to α-catenin is associated with increased Yorkie activity and wing growth, even in the absence of increased cytoskeletal tension. Our observations establish α-catenin as a multi-functional mechanotransducer and confirm Jub recruitment to α-catenin as a key contributor to biomechanical regulation of Hippo signaling.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Uniones Adherentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Proteínas con Dominio LIM/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Alas de Animales/fisiología , alfa Catenina/metabolismo , Actinas/metabolismo , Animales , Sitios de Unión/genética , Fenómenos Biomecánicos , Adhesión Celular , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/genética , Mecanotransducción Celular , Proteínas Nucleares/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/genética , Proteínas Señalizadoras YAP
10.
Development ; 145(20)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30254143

RESUMEN

Tissue growth needs to be properly controlled for organs to reach their correct size and shape, but the mechanisms that control growth during normal development are not fully understood. We report here that the activity of the Hippo signaling transcriptional activator Yorkie gradually decreases in the central region of the developing Drosophila wing disc. Spatial and temporal changes in Yorkie activity can be explained by changes in cytoskeletal tension and biomechanical regulators of Hippo signaling. These changes in cellular biomechanics correlate with changes in cell density, and experimental manipulations of cell density are sufficient to alter biomechanical Hippo signaling and Yorkie activity. We also relate the pattern of Yorkie activity in older discs to patterns of cell proliferation. Our results establish that spatial and temporal patterns of Hippo signaling occur during wing development, that these patterns depend upon cell-density modulated tissue mechanics and that they contribute to the regulation of wing cell proliferation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Alas de Animales/embriología , Alas de Animales/metabolismo , Animales , Membrana Basal/citología , Membrana Basal/metabolismo , Fenómenos Biomecánicos , Recuento de Células , Proliferación Celular , Citoesqueleto/metabolismo , Drosophila melanogaster/citología , Discos Imaginales/citología , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Factores de Tiempo , Alas de Animales/citología
11.
Nature ; 525(7567): 109-13, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26258302

RESUMEN

Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds), that segregates with MVP in the family. Morpholino knockdown of the zebrafish homologue dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 messenger RNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1(+/-) mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs, as well as in Dchs1(+/-) mouse MVICs, result in altered migration and cellular patterning, supporting these processes as aetiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease.


Asunto(s)
Cadherinas/genética , Cadherinas/metabolismo , Prolapso de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/patología , Mutación/genética , Animales , Tipificación del Cuerpo/genética , Proteínas Relacionadas con las Cadherinas , Cadherinas/deficiencia , Movimiento Celular/genética , Cromosomas Humanos Par 11/genética , Femenino , Humanos , Masculino , Ratones , Válvula Mitral/anomalías , Válvula Mitral/embriología , Válvula Mitral/patología , Válvula Mitral/cirugía , Linaje , Fenotipo , Estabilidad Proteica , ARN Mensajero/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
J Cell Sci ; 131(5)2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29440237

RESUMEN

Hippo signaling is regulated by biochemical and biomechanical cues that influence the cytoskeleton, but the mechanisms that mediate this have remained unclear. We show that all three mammalian Ajuba family proteins - AJUBA, LIMD1 and WTIP - exhibit tension-dependent localization to adherens junctions, and that both LATS family proteins, LATS1 and LATS2, exhibit an overlapping tension-dependent junctional localization. This localization of Ajuba and LATS family proteins is also influenced by cell density, and by Rho activation. We establish that junctional localization of LATS kinases requires LIMD1, and that LIMD1 is also specifically required for the regulation of LATS kinases and YAP1 by Rho. Our results identify a biomechanical pathway that contributes to regulation of mammalian Hippo signaling, establish that this occurs through tension-dependent LIMD1-mediated recruitment and inhibition of LATS kinases in junctional complexes, and identify roles for this pathway in both Rho-mediated and density-dependent regulation of Hippo signaling.


Asunto(s)
Proteínas Portadoras/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Mecanotransducción Celular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Uniones Adherentes/genética , Animales , Recuento de Células , Proliferación Celular , Proteínas Co-Represoras , Proteínas del Citoesqueleto , Citoesqueleto/genética , Perros , Células HEK293 , Vía de Señalización Hippo , Humanos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Factores de Transcripción , Proteínas Supresoras de Tumor/genética , Proteínas Señalizadoras YAP , Quinasas Asociadas a rho/genética
13.
Development ; 144(23): 4238-4248, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29183937

RESUMEN

In his classic book On Growth and Form, D'Arcy Thompson discussed the necessity of a physical and mathematical approach to understanding the relationship between growth and form. The past century has seen extraordinary advances in our understanding of biological components and processes contributing to organismal morphogenesis, but the mathematical and physical principles involved have not received comparable attention. The most obvious entry of physics into morphogenesis is via tissue mechanics. In this Review, we discuss the fundamental role of mechanical interactions between cells induced by growth in shaping a tissue. Non-uniform growth can lead to accumulation of mechanical stress, which in the context of two-dimensional sheets of tissue can specify the shape it assumes in three dimensions. A special class of growth patterns - conformal growth - does not lead to the accumulation of stress and can generate a rich variety of planar tissue shapes. Conversely, mechanical stress can provide a regulatory feedback signal into the growth control circuit. Both theory and experiment support a key role for mechanical interactions in shaping tissues and, via mechanical feedback, controlling epithelial growth.


Asunto(s)
Crecimiento/fisiología , Animales , Fenómenos Biomecánicos , Proliferación Celular/fisiología , Retroalimentación Fisiológica , Humanos , Conceptos Matemáticos , Modelos Biológicos , Morfogénesis/fisiología , Organogénesis/fisiología , Transducción de Señal , Estrés Mecánico
14.
Development ; 143(13): 2367-75, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27381226

RESUMEN

The protocadherins Fat4 and Dchs1 act as a receptor-ligand pair to regulate many developmental processes in mice and humans, including development of the vertebrae. Based on conservation of function between Drosophila and mammals, Fat4-Dchs1 signalling has been proposed to regulate planar cell polarity (PCP) and activity of the Hippo effectors Yap and Taz, which regulate cell proliferation, survival and differentiation. There is strong evidence for Fat regulation of PCP in mammals but the link with the Hippo pathway is unclear. In Fat4(-/-) and Dchs1(-/-) mice, many vertebrae are split along the midline and fused across the anterior-posterior axis, suggesting that these defects might arise due to altered cell polarity and/or changes in cell proliferation/differentiation. We show that the somite and sclerotome are specified appropriately, the transcriptional network that drives early chondrogenesis is intact, and that cell polarity within the sclerotome is unperturbed. We find that the key defect in Fat4 and Dchs1 mutant mice is decreased proliferation in the early sclerotome. This results in fewer chondrogenic cells within the developing vertebral body, which fail to condense appropriately along the midline. Analysis of Fat4;Yap and Fat4;Taz double mutants, and expression of their transcriptional target Ctgf, indicates that Fat4-Dchs1 regulates vertebral development independently of Yap and Taz. Thus, we have identified a new pathway crucial for the development of the vertebrae and our data indicate that novel mechanisms of Fat4-Dchs1 signalling have evolved to control cell proliferation within the developing vertebrae.


Asunto(s)
Cadherinas/metabolismo , Transducción de Señal , Columna Vertebral/citología , Columna Vertebral/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Polaridad Celular , Proliferación Celular , Ratones Mutantes , Morfogénesis , Mutación/genética , Fosfoproteínas/metabolismo , Columna Vertebral/metabolismo , Transactivadores , Proteínas Señalizadoras YAP
15.
Proc Natl Acad Sci U S A ; 113(45): E6974-E6983, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791172

RESUMEN

Mechanical stress can influence cell proliferation in vitro, but whether it makes a significant contribution to growth control in vivo, and how it is modulated and experienced by cells within developing tissues, has remained unclear. Here we report that differential growth reduces cytoskeletal tension along cell junctions within faster-growing cells. We propose a theoretical model to explain the observed reduction of tension within faster-growing clones, supporting it by computer simulations based on a generalized vertex model. This reduced tension modulates a biomechanical Hippo pathway, decreasing recruitment of Ajuba LIM protein and the Hippo pathway kinase Warts, and decreasing the activity of the growth-promoting transcription factor Yorkie. These observations provide a specific mechanism for a mechanical feedback that contributes to evenly distributed growth, and we show that genetically suppressing mechanical feedback alters patterns of cell proliferation in the developing Drosophila wing. By providing experimental support for the induction of mechanical stress by differential growth, and a molecular mechanism linking this stress to the regulation of growth in developing organs, our results confirm and extend the mechanical feedback hypothesis.

16.
Development ; 142(15): 2574-85, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116666

RESUMEN

Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to regulate their differentiation into nephrons. Here, we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 in mice leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairment of nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenchyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to those of Fat4 mutants implicates Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4 and Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo.


Asunto(s)
Cadherinas/metabolismo , Riñón/embriología , Células Madre Mesenquimatosas/fisiología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Animales , Cadherinas/genética , Galactósidos , Técnicas Histológicas , Procesamiento de Imagen Asistido por Computador , Indoles , Ratones , Microscopía Confocal , Mutación/genética , Nefronas/embriología , Uréter/embriología
17.
Development ; 140(4): 831-42, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23318637

RESUMEN

The large atypical cadherin Fat is a receptor for both Hippo and planar cell polarity (PCP) pathways. Here we investigate the molecular basis for signal transduction downstream of Fat by creating targeted alterations within a genomic construct that contains the entire fat locus, and by monitoring and manipulating the membrane localization of the Fat pathway component Dachs. We establish that the human Fat homolog FAT4 lacks the ability to transduce Hippo signaling in Drosophila, but can transduce Drosophila PCP signaling. Targeted deletion of conserved motifs identifies a four amino acid C-terminal motif that is essential for aspects of Fat-mediated PCP, and other internal motifs that contribute to Fat-Hippo signaling. Fat-Hippo signaling requires the Drosophila Casein kinase 1ε encoded by discs overgrown (Dco), and we characterize candidate Dco phosphorylation sites in the Fat intracellular domain (ICD), the mutation of which impairs Fat-Hippo signaling. Through characterization of Dachs localization and directed membrane targeting of Dachs, we show that localization of Dachs influences both the Hippo and PCP pathways. Our results identify a conservation of Fat-PCP signaling mechanisms, establish distinct functions for different regions of the Fat ICD, support the correlation of Fat ICD phosphorylation with Fat-Hippo signaling, and confirm the importance of Dachs membrane localization to downstream signaling pathways.


Asunto(s)
Cadherinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/fisiología , Animales , Animales Modificados Genéticamente , Western Blotting , Caseína Cinasa 1 épsilon/genética , Drosophila/genética , Proteínas de Drosophila/genética , Técnicas Histológicas , Humanos , Inmunoprecipitación , Mutación/genética , Miosinas/metabolismo , Fosforilación , Plásmidos/genética
18.
Proc Natl Acad Sci U S A ; 110(51): 20420-5, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24282293

RESUMEN

Dachsous-Fat signaling via the Hippo pathway influences proliferation during Drosophila development, and some of its mammalian homologs are tumor suppressors, highlighting its role as a universal growth regulator. The Fat/Hippo pathway responds to morphogen gradients and influences the in-plane polarization of cells and orientation of divisions, linking growth with tissue patterning. Remarkably, the Fat pathway transduces a growth signal through the polarization of transmembrane complexes that responds to both morphogen level and gradient. Dissection of these complex phenotypes requires a quantitative model that provides a systematic characterization of the pathway. In the absence of detailed knowledge of molecular interactions, we take a phenomenological approach that considers a broad class of simple models, which are sufficiently constrained by observations to enable insight into possible mechanisms. We predict two modes of local/cooperative interactions among Fat-Dachsous complexes, which are necessary for the collective polarization of tissues and enhanced sensitivity to weak gradients. Collective polarization convolves level and gradient of input signals, reproducing known phenotypes while generating falsifiable predictions. Our construction of a simplified signal transduction map allows a generalization of the positional value model and emphasizes the important role intercellular interactions play in growth and patterning of tissues.


Asunto(s)
Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Morfogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas Relacionadas con las Cadherinas , Drosophila melanogaster
19.
Nat Genet ; 38(10): 1142-50, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16980976

RESUMEN

Recent studies in Drosophila melanogaster of the protocadherins Dachsous and Fat suggest that they act as ligand and receptor, respectively, for an intercellular signaling pathway that influences tissue polarity, growth and gene expression, but the basis for signaling downstream of Fat has remained unclear. Here, we characterize functional relationships among D. melanogaster tumor suppressors and identify the kinases Discs overgrown and Warts as components of a Fat signaling pathway. fat, discs overgrown and warts regulate a common set of downstream genes in multiple tissues. Genetic experiments position the action of discs overgrown upstream of the Fat pathway component dachs, whereas warts acts downstream of dachs. Warts protein coprecipitates with Dachs, and Warts protein levels are influenced by fat, dachs and discs overgrown in vivo, consistent with its placement as a downstream component of the pathway. The tumor suppressors Merlin, expanded, hippo, salvador and mob as tumor suppressor also share multiple Fat pathway phenotypes but regulate Warts activity independently. Our results functionally link what had been four disparate groups of D. melanogaster tumor suppressors, establish a basic framework for Fat signaling from receptor to transcription factor and implicate Warts as an integrator of multiple growth control signals.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Genes Supresores de Tumor , Transducción de Señal , Animales , Moléculas de Adhesión Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Miosinas/genética , Miosinas/metabolismo , Neurofibromina 2/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
20.
Semin Cell Dev Biol ; 23(7): 812-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22554983

RESUMEN

Metazoan cells are exposed to a multitude of signals, which they integrate to determine appropriate developmental or physiological responses. Although the Hippo pathway was only discovered recently, and our knowledge of Hippo signal transduction is far from complete, a wealth of interconnections amongst Hippo and other signaling pathways have already been identified. Hippo signaling is particularly important for growth control, and I describe how integration of Hippo and other pathways contributes to regulation of organ growth. Molecular links between Hippo signaling and other signal transduction pathways are summarized. Different types of mechanisms for signal integration are described, and examples of how the complex interconnections between pathways are used to guide developmental and physiological growth responses are discussed. Features of Hippo signaling appear to make it particularly well suited to signal integration, including its responsiveness to cell-cell contact and the mediation of its transcriptional output by transcriptional co-activator proteins that can interact with transcription factors of other pathways.


Asunto(s)
Espacio Intracelular/metabolismo , Transducción de Señal , Animales , Comunicación Celular , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA