Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Molecules ; 27(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014352

RESUMEN

Drought has a detrimental effect on crop production, affecting economically important plants' growth rates and development. Catharanthus roseus is an important medicinal plant that produces many pharmacologically active compounds, some of which have significant antitumor activity. The effect of bulk salicylic acid (SA) and salicylic acid nanoparticles (SA-NPs) were evaluated on water-stressed Catharanthus roseus plants. The results showed that SA and SA-NPs alleviated the negative effects of drought in the treated plants by increasing their shoot and root weights, relative water content, leaf area index, chlorophyll content, and total alkaloids percentage. From the results, a low concentration (0.05 mM) of SA-NPs exerted positive effects on the treated plants, while the best results of the bulk SA were recorded after using the highest concentration (0.1 mM). Both treatments increased the expression level of WRKY1, WRKY2, WRKY40, LEA, and MYC2 genes, while the mRNA level of MPKK1 and MPK6 did not show a significant change. This study discussed the importance of SA-NPs in the induction of drought stress tolerance even when used in low concentrations, in contrast to bulk SA, which exerts significant results only at higher concentrations.


Asunto(s)
Catharanthus , Catharanthus/genética , Sequías , Hojas de la Planta/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Agua/metabolismo
2.
Molecules ; 27(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35268567

RESUMEN

Phytoplasmas are economically important plant pathogenic bacterial diseases, causing severe yield losses worldwide. In this study, we tested nanoformulations such as glycyrrhizic acid ammonium salt (GAS), salicylic acid (SA), and boric acid (BA) as novel antimicrobial agents inducing the resistance against the phytoplasma disease in faba bean. The nanoparticles (NP) were foliar-applied to naturally phytoplasma-infected faba bean with three concentrations from each of SA, GAS, and BA, under field conditions. Nested PCR (using universal primer pairs P1/P7 and R16F2n/R16R2) were reacted positively with all symptomatic samples and gave a product size of approximately 1200 bp, while the healthy plant gave no results. Transmission electron microscopy examinations of phytoplasma-infected faba bean plants treated with different nanoparticles revealed that severe damage occurred in phytoplasma particle's structure, degradation, malformation, lysis in the cell membrane, and the cytoplasmic leakage followed by complete lysis of phytoplasma cells. Exogenous application of GAS-NP (1.68 µM), SA-NP (0.28 µM), and BA-NP (0.124 µM) suppressed the infection percentage of phytoplasma by 75%, 50%, and 20%, and the disease severity by 84%, 64%, and 54%, respectively. Foliar application of nanoparticles improved Fv/Fm (maximum quantum efficiency of PSII Photochemistry), PI (the performance index), SPAD chlorophyll (the relative chlorophyll content), shoots height, and leaves number, thus inducing recovery of the plant biomass and green pods yield. The most effective treatment was GAS-NP at 1.68 µM that mediated substantial increases in the shoots' fresh weight, shoots' dry weight, number of pods per plant, and green pods yield by 230%, 244%, 202% and 178%, respectively, compared to those of infected plants not sprayed with nanoparticles. This study demonstrated the utility of using nanoparticles, particularly GAS-NP at 1.68 µM to suppress the phytoplasma infection.


Asunto(s)
Phytoplasma
3.
Proteomics ; 16(20): 2625-2636, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27402336

RESUMEN

Pyrenophora teres f. teres (Ptt) causes net form net blotch disease of barley, partially by producing necrosis-inducing proteins. The protein profiles of the culture filtrates of 28 virulent isolates were compared by a combination of 2DE and 1D-PAGE with 105 spots and 51 bands chosen for analysis by liquid chromatography electrospray ionization tandem mass spectrometry. A total of 259 individual proteins were identified with 63 of these proteins being common to the selected virulent isolates. Ptt secretes a broad spectrum of proteins including cell wall degrading enzymes; virulence factors and effectors; proteins associated with fungal pathogenesis and development; and proteins related to oxidation-reduction processes. Potential virulence factors and effectors identified included proteins with glucosidase activity, ricin B and concanavalin A-like lectins, glucanases, spherulin, cutinase, pectin lyase, leucine-rich repeat protein, and ceratoplatanin. Small proteins with unknown function but cysteine-rich, common to effectors, were also identified. Differences in the secretion profile of the Ptt isolates have also provided important insight into the different mechanisms contributing to virulence and the development of net form net blotch symptoms.


Asunto(s)
Ascomicetos/fisiología , Proteínas Fúngicas/metabolismo , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Factores de Virulencia/metabolismo , Ascomicetos/crecimiento & desarrollo , Ascomicetos/patogenicidad , Proteínas Fúngicas/análisis , Oxidación-Reducción , Proteómica , Biología de Sistemas , Factores de Virulencia/análisis
4.
Pest Manag Sci ; 78(1): 86-94, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34437749

RESUMEN

BACKGROUND: Systemic resistance stimulated by rhizosphere bacteria is an important strategy for the management of plant viruses. The efficacy of Bacillus subtilis subsp. subtilis was assessed for protection of cucumber and Arabidopsis against Cucumber mosaic virus (CMV). Moreover, transcriptomic analysis was carried out for A. thaliana colonized with B. subtilis subsp. subtilis and infected with CMV. RESULTS: Treatment with a cell suspension of Bacillus revealed a significant reduction of CMV severity in comparison to their control. All Arabidopsis mutants treated with B. subtilis showed a clear reduction in CMV accumulation. Disease severity data and virus concentration titer measurements correlated with gene up-regulation in microarray and reverse transcription quantitative polymerase chain reaction (RT-qPCR) experiments. Bacillus treatment increased Arabidopsis growth characteristics (fresh and dry weights and number of leaflets) under pot conditions. The molecular mechanisms by which Bacillus activated resistance to CMV were investigated. Using the microarray hybridization technique, we were able to determine the mechanism of resistance elicited by B. subtilis against CMV. The transcriptomic analysis confirmed the up-regulation of more than 250 defense-related genes in Arabidopsis expressing induced systemic resistance (ISR). RT-qPCR results validated the overexpression of defense genes (YLS9 and PR1 in Arabidopsis and PR1 and LOX in cucumber), implying their important roles in the stimulated defense response. CONCLUSION: Through the study of microarray and RT-qPCR analyses, it can be concluded that the overexpression of pathogenesis-related genes was necessary to stimulate CMV defense in cucumber and Arabidopsis by B. subtilis subsp. subtilis. © 2021 Society of Chemical Industry.


Asunto(s)
Arabidopsis , Bacillus , Cucumovirus , Arabidopsis/genética , Enfermedades de las Plantas/genética
5.
Curr Org Synth ; 19(1): 166-176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35139784

RESUMEN

The dyes are synthesized by 3-Amino-2-thioxo-4thiazolidinone (N-Amino rhodanine) with glutaraldehyde or terephthalaldehyde by 2:1 mole to form a and b then coupled with diazonium salts p- Amino benzenesulfonic acid and 4-Amino 3,4-disulfoazobenzeneazobenzene by 2:1 to form new different bis-mono-azo a1 and b1 and diazo a2 and b2 acid dyes. Therefore, the synthesized dyes were applied to both silk and wool fabric materials. We also evaluated the antimicrobial susceptivity of these dyed fabrics to two model gram-negative and gram-positive bacteria. Further, the chemical composition of these dyes is emphasized by an elemental analysis. AIMS: This paper aims to synthesize and apply dye and antimicrobial to four new acid dyes based on derivatives of N-Amino rhodanine as a chromophoric group. Then, these dyes are used in dyeing silk and wool which have good lightfastness, and are also excellent for washing, rubbing and sweating fastness. Also, we measure antimicrobial susceptivity of silk and wool fabrics to Gram-negative and Gram-positive bacteria. BACKGROUND: The new synthetic acid dyes, which have antimicrobial susceptivity to gram-negative and gram-positive bacteria, are mostly used on silk and wool fabrics which are excellent for lightfastness, washing, rubbing and sweating fastness. OBJECTIVES: The present studies aimed at synthesis, characterization and antimicrobial susceptivity to gramnegative and gram-positive bacteria. METHODS: The infra-red spectrum was recorded using an Infra-red spectrometer, Perkin Elmer/1650 FTIR. The 1H-NMR spectra were recorded using a Varian 400MHz spectrometer. The absorbance of the dyes was measured in the ultraviolet-visible region between 300 and 700 nm by a UNICAM UV spectrophotometer. The dye uptake by wool and silk fabrics was measured using a Shimadzu UV-2401PC (UV/V is spectrophotometer at λmax) before and after dyeing. The produced dyes were found to have a good antimicrobial susceptivity to a variety of bacteria. RESULTS AND DISCUSSION: The compounds a1, b1, a2 &b2 show good antimicrobial activity toward gramnegative (E. coli), gram-positive (S. aurous) bacteria. The data showed that exhaustion and fastness activities of silk and wool dyed fabrics were both very high. CONCLUSION: In this work, we prepared newly synthesized acid dyes based on 3-Amino-2-thioxo-4- thiazolidinone derivatives and used them for dyeing wool and silk fabrics. Both synthetic dyes have shown good lightfastness and fastness properties. Also, all dyes have shown a good antimicrobial effect.


Asunto(s)
Antiinfecciosos , Colorantes , Animales , Antibacterianos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Colorantes/química , Escherichia coli , Bacterias Grampositivas , Seda , Tiazolidinas , Lana
6.
Plants (Basel) ; 11(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956500

RESUMEN

Many embryogenic systems have been designed to generate somatic embryos (SEs) with the morphology, biochemistry, and vigor uniformity of zygotic embryos (ZEs). During the current investigation, several antioxidants were added to the maturation media of the developing somatic embryos of date palm. Explant material was a friable embryogenic callus that was placed in maturation media containing ABA at 0.5 mg L-1, 5 g L-1 polyethylene glycol, and 10 g L-1 phytagel. Furthermore, α-tocopherol or reduced glutathione (GSH) were used separately at (25 and 50 mg L-1). These treatments were compared to a widely used date palm combination of reduced ascorbic acid (ASC) and citric acid at 150 and 100 mg L-1, respectively, and to the medium free from any antioxidants. The relative growth percentage of embryogenic callus (EC), globularization degree, differentiation%, and SEs number were significantly increased with GSH (50 mg L-1). Additionally, the latter treatment significantly enhanced the conversion% of SEs and the number of secondary somatic embryos (SSEs). ASC and citric acid treatment increased leaf length, while α-tochopherol (50 mg L-1) elevated the number of leaves plantlet-1. GSH at 50 mg L-1 catalyzed the activities of polyphenol oxidase (PPO) and peroxidase (POD) in EC and enhanced the accumulation of proteins in SEs.

7.
Aging (Albany NY) ; 13(18): 21975-21990, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34543231

RESUMEN

BACKGROUND: The aim of the study is to determine the anticancer activity of Thymus algeriensis (TS) and its underlying mechanisms using in vitro and in animal models. METHODS: HCT116 cells were treated with TS essential oil alone or with TRAIL, and then its anticancer effect was determined by using MTT assay, live dead assay, caspase activation and PARP cleavage. Further mechanisms of its anticancer effects was determined by analyzing expression of death receptor signaling pathway using Western blotting. A mouse model was also used to assess the antitumor potential of thyme essential oil. RESULTS: TS oily fraction showed tumor growth inhibitory effect even at lower concentration. TS induces apoptotic cell death as indicated by cleavage of PARP, and activation of the initiator and effector caspases (caspase-3, -8 and -9). Further, results showed that TS increases the expression of death receptors (DRs) and reduces the expression of TRAIL decoy receptors (DcRs). In addition, upregulation of signaling molecules of MAPK pathway (p38 kinase, ERK, JNK), down-regulation of c-FLIP, and overexpression of SP1 and CHOP were observed by TS. Further in animal model, intragastric administration of TS (12.5 mg/ml and 50 mg/ml) prevented colorectal carcinogenesis by blocking multi-steps in carcinoma. CONCLUSION: Overall, these results indicate that thymus essential oil promotes apoptosis in HCT116 cells and impedes tumorigenesis in animal model. Moreover, thyme potentiates TRAIL-induced cell death through upregulation of DRs, CHOP and SP1 as well as downregulation of antiapoptotic proteins in HCT116 cells. However, therapeutic potential of TS needs to be further explored.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/metabolismo , Aceites Volátiles/farmacología , Receptores de Muerte Celular/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Thymus (Planta)/química , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/fisiopatología , Células HCT116 , Humanos , Ratones , Aceites Volátiles/química , Receptores de Muerte Celular/genética , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Regulación hacia Arriba/efectos de los fármacos
8.
Front Biosci (Schol Ed) ; 13(1): 1-13, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34256525

RESUMEN

TNF-related apoptosis-inducing ligand (TRAIL/Apo2L), a member of cytokine family, is known to selectively induce apoptosis in cancer cells. However, developing resistance to TRAIL is a major obstacle in cancer therapy. In this study, the in vitro effect of Teucrium alopecurus (TA) essential oil on inhibition of cancer cell growth and enhancing TRAIL-induced apoptosis were investigated in colon cancer cells. Untreated tumor cell lines are used as controls. TA induced cell death and increased the anticancer effects of TRAIL as observed by cell toxicity, live/dead assay, cleavage of caspases and PARP. Furthermore, the mechanism of anticancer potentiating effect of TA was found to be linked with the upregulation of death receptors (DRs) and reduced expression of TRAIL decoy receptors (DcRs). TA also down-regulated antiapoptotic proteins and induced p53 in colon cancer cells. In addition, we observed upregulation of MAPK signalling pathway (p38 kinase, JNK, ERK) and increased expression of C/EBP homologous transcription factor (CHOP) and specificity protein 1 (SP1) by TA. These findings demonstrate the potent anticancer effect of bioactive constituents of Teucrium alopecurus essential oil.


Asunto(s)
Neoplasias del Colon , Aceites Volátiles , Teucrium , Apoptosis , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Humanos , Aceites Volátiles/farmacología , Especies Reactivas de Oxígeno , Ligando Inductor de Apoptosis Relacionado con TNF , Teucrium/química , Factor de Transcripción CHOP
9.
Sci Rep ; 11(1): 24176, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921216

RESUMEN

Apigenin is one of the most studied flavonoids and is widely distributed in the plant kingdom. Apigenin exerts important antioxidant, antibacterial, antifungal, antitumor activities, and anti-inflammatory effects in neurological or cardiovascular disease. Chalcone isomerase A (chiA) is an important enzyme of the flavonoid biosynthesis pathway. In order to enhance the apigenin production, the petunia chi A gene was transformed for Astragalus trigonus. Bialaphos survived plants were screened by PCR, dot blot hybridization and RT-PCR analysis. Also, jasmonic acid, salicylic acid, chitosan and yeast extract were tested to evaluate their capacity to work as elicitors for apigenin. Results showed that yeast extract was the best elicitor for induction of apigenin with an increase of 3.458 and 3.9 fold of the control for calli and cell suspension culture, respectively. Transformed cell suspension showed high apigenin content with a 20.17 fold increase compared to the control and 6.88 fold more than the yeast extract treatment. While, transformed T1 calli derived expressing chiA gene produced apigenin 4.2 fold more than the yeast extract treatment. It can be concluded that the highest accumulation of apigenin was obtained with chiA transgenic cell suspension system and it can be utilized to enhancement apigenin production in Astragalus trigonus.


Asunto(s)
Apigenina/metabolismo , Planta del Astrágalo/enzimología , Liasas Intramoleculares/genética , Técnicas de Cultivo de Célula , Extractos Celulares/química , Quitosano/química , Ciclopentanos/química , Flavonoides/biosíntesis , Oxilipinas/química , Ácido Salicílico/química , Levaduras/química
10.
Plants (Basel) ; 10(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34451667

RESUMEN

Rice is the lifeline for more than half of the world population, and in India, in view of its huge demand in the country, farmers adopt a rice-rice cropping system where the irrigation facility is available. As rice is a nutrient-exhausting crop, sustainable productivity of rice-rice cropping system greatly depends on appropriate nutrient management in accordance with the inherent soil fertility. The application of an ample dose of fertilizer is the key factor for maintaining sustainable rice yields and nutrient balance of the soil. Considering the above facts, an experiment was conducted on nutrient management in a rice-rice cropping system at the university farm of Visva-Bharati, situated in a sub-tropical climate under the red and lateritic belt of the western part of West Bengal, India, during two consecutive years (2014-2016). The experiment was laid out in a Randomized Completely Block Design with 12 treatments and three replications, with different rates of N:P:K:Zn:S application in both of the growing seasons, namely, kharif and Boro. The recommended (ample) dose of nutrients was 80:40:40:25:20 and 120:60:60:25:20 kg ha-1 of N:P2O5:K2O:Zn:S in the Kharif and Boro season, respectively. A high yielding variety, named MTU 7029, and a hybrid, Arize 6444 GOLD, were taken in the Kharif and Boro seasons, respectively. The results clearly indicated that the application of a recommended dose of nutrients showed its superiority over the control (no fertilizer application) in the expression of growth characters, yield attributes, yields, and nutrient uptake of Kharif as well as Boro rice. Out of the all treatments, the best result was found in the treatment where the ample dose of nutrients was applied, resulting in maximum grain yield in both the Kharif (5.6 t ha-1) and Boro (6.6 t ha-1) season. The corresponding yield attributes for the same treatment in the Kharif (panicles m-2: 247.9; grains panicle-1: 132.0; spikelets panicle-1: 149.6; test weight: 23.8 g; and panicle length: 30.6 cm) and Boro (panicles m-2: 281.6; grains panicle-1: 142.7; spikelets panicle-1: 157.2; test weight: 24.8 g; and panicle length: 32.8 cm) season explained the maximum yield in this treatment. Further, a reduction or omission of individual nutrients adversely impacted on the above traits and resulted in a negative balance of the respective nutrients. The study concluded that the application of a recommended dose of nutrients was essential for proper nutrient balance and sustainable yields in the rice-rice cropping system.

11.
Plant Signal Behav ; 16(2): 1853384, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356834

RESUMEN

Not much information is available to substantiate the possible role of γ -aminobutyric acid (GABA) signaling in mitigating water-deficit stress in snap bean (Phaseolus vulgaris L.) plants under semiarid conditions. Present work aims to investigate the role of exogenous GABA (foliar application; 0.5, 1 and 2 mM) in amelioration of drought stress and improvement of field performance on snap bean plants raised under two drip irrigation regimes (100% and 70% of water requirements). Water stress led to significant reduction in plant growth, leaf relative water content (RWC), cell membrane stability index (CMSI), nutrient uptake (N, P, K, Ca, Fe and Zn), pod yield and its content from protein and total soluble solids (TSS). Meanwhile, lipid peroxidation (malondialdehyde content- MDA), osmolyte content (free amino acids- FAA, proline, soluble sugars) antioxidative defense (activity of superoxide dismutase- SOD, catalase- CAT, peroxidase- POX and ascorbate peroxidase- APX) and the pod fiber content exhibited significantly increase due to water stress. Exogenous GABA application (especially at 2 mM) revealed partial normalization of the effects of drought stress in snap bean plants. GABA-induced mitigation of drought stress was manifested by improvement in growth, water status, membrane integrity, osmotic adjustment, antioxidant defense and nutrient acquisition. Furthermore, GABA application during water stress in snap bean plants resulted in improvement of field performance being manifested by increased pod yield and its quality attributes. To sum up, exogenous GABA appears to function as an effective priming molecule to alleviate drought stress in snap bean plants under semiarid conditions.


Asunto(s)
Sequías , Phaseolus/metabolismo , Ácido gamma-Aminobutírico/farmacología , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Membrana Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Malondialdehído/metabolismo , Ósmosis , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo
12.
Pak J Biol Sci ; 23(7): 922-930, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32700840

RESUMEN

BACKGROUND AND OBJECTIVE: Radiation exposure can cause several harmful effects in biological systems due to free radical production. Several antioxidants have been tested as potential hepatoprotective agents against ionizing radiation as they lower oxidative stress in normal cells induced by Reactive Oxygen Species (ROS). The present study was conducted to evaluate the possible ameliorative effects of Juniperus phoenicea L. MATERIALS AND METHODS: Aqueous leaves extract on different biochemical and histopathological parameters against whole body gamma-irradiation-induced oxidative stress, organ dysfunction and metabolic disturbances in experimental Swiss Albino rats. After a single dose of gamma-radiation (6 Gy), there was a significant reduction in albumin, total protein and globulin levels and a significant increase in the liver enzymes (ALT, AST, ALP and GGT) and lipid profile parameters (cholesterol, triglyceride, HDL-cholesterol and LDL-cholesterol) in gamma-irradiated rats unlike in normal controls. RESULTS: The gamma-irradiated rats pre-treated with J. phoenicea leaf extracts, however, showed a significant increase in albumin, total protein and globulin levels and a significant reduction in liver enzymes and lipid profile parameters as opposed to the untreated ones. The gamma-irradiated rats showed toxic changes in the liver, whereas, the rats pre-treated with J. phoenicea leaves extract demonstrated a protective effect. Additionally, gamma- irradiation caused myocardial degenerative changes, interstitial edema between muscle fibers, necrosis and inflammatory cells infiltration and fibrotic and cellular damages to the heart, but J. phoenicea leaves extract were found to ameliorate the gamma-irradiation-induced changes in the heart. CONCLUSION: The results suggested that treatment with J. phoenicea leaves extract is possibly safe and can ameliorate gamma-irradiation-induced oxidative damage and tissue injury in rats. The leaves of J. phoenicea could serve as a potential source of therapeutic antioxidants.


Asunto(s)
Rayos gamma , Juniperus/química , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Protectores contra Radiación/farmacología , Animales , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Hígado/efectos de la radiación , Pruebas de Función Hepática , Masculino , Estrés Oxidativo/efectos de la radiación , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA