Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 45(10): 8053-8070, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37886952

RESUMEN

Since the discovery of dendritic cells (DCs) in 1973 by Ralph Steinman, a tremendous amount of knowledge regarding these innate immunity cells has been accumulating. Their role in regulating both innate and adaptive immune processes is gradually being uncovered. DCs are proficient antigen-presenting cells capable of activating naive T-lymphocytes to initiate and generate effective anti-tumor responses. Although DC-based immunotherapy has not yielded significant results, the substantial number of ongoing clinical trials underscores the relevance of DC vaccines, particularly as adjunctive therapy or in combination with other treatment options. This review presents an overview of current knowledge regarding human DCs, their classification, and the functions of distinct DC populations. The stepwise process of developing therapeutic DC vaccines to treat oncological diseases is discussed, along with speculation on the potential of combined therapy approaches and the role of DC vaccines in modern immunotherapy.

2.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835039

RESUMEN

Sphingolipidoses are defined as a group of rare hereditary diseases resulting from mutations in the genes encoding lysosomal enzymes. This group of lysosomal storage diseases includes more than 10 genetic disorders, including GM1-gangliosidosis, Tay-Sachs disease, Sandhoff disease, the AB variant of GM2-gangliosidosis, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann-Pick disease, Farber disease, etc. Enzyme deficiency results in accumulation of sphingolipids in various cell types, and the nervous system is also usually affected. There are currently no known effective methods for the treatment of sphingolipidoses; however, gene therapy seems to be a promising therapeutic variant for this group of diseases. In this review, we discuss gene therapy approaches for sphingolipidoses that are currently being investigated in clinical trials, among which adeno-associated viral vector-based approaches and transplantation of hematopoietic stem cells genetically modified with lentiviral vectors seem to be the most effective.


Asunto(s)
Enfermedad de Gaucher , Esfingolipidosis , Enfermedad de Tay-Sachs , Humanos , Esfingolípidos/metabolismo , Esfingolipidosis/genética , Terapia Genética
3.
Explor Target Antitumor Ther ; 5(3): 581-599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966179

RESUMEN

Passaged cell lines represent currently an integral component in various studies of malignant neoplasms. These cell lines are utilized for drug screening both in monolayer cultures or as part of three-dimensional (3D) tumor models. They can also be used to model the tumor microenvironment in vitro and in vivo through xenotransplantation into immunocompromised animals. However, immortalized cell lines have some limitations of their own. The homogeneity of cell line populations and the extensive passaging in monolayer systems make these models distant from the original disease. Recently, there has been a growing interest among scientists in the use of primary cell lines, as these are passaged directly from human tumor tissues. In this case, cells retain the morphological and functional characteristics of the tissue from which they were derived, an advantage often not observed in passaged cultures. This review highlights the advantages and limitations of passaged and primary cell cultures, their similarities and differences, as well as existing test systems that are based on primary and passaged cell cultures for drug screening purposes.

4.
Cells ; 12(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36899921

RESUMEN

Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.


Asunto(s)
Terapia Genética , Vectores Genéticos , Serogrupo , Terapia Genética/métodos , Ingeniería Genética , Tropismo , Dependovirus/genética
5.
Plants (Basel) ; 11(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35890496

RESUMEN

In late December 2019, the first cases of COVID-19 emerged as an outbreak in Wuhan, China that later spread vastly around the world, evolving into a pandemic and one of the worst global health crises in modern history. The causative agent was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although several vaccines were authorized for emergency use, constantly emerging new viral mutants and limited treatment options for COVID-19 drastically highlighted the need for developing an efficient treatment for this disease. One of the most important viral components to target for this purpose is the main protease of the coronavirus (Mpro). This enzyme is an excellent target for a potential drug, as it is essential for viral replication and has no closely related homologues in humans, making its inhibitors unlikely to be toxic. Our review describes a variety of approaches that could be applied in search of potential inhibitors among plant-derived compounds, including virtual in silico screening (a data-driven approach), which could be structure-based or fragment-guided, the classical approach of high-throughput screening, and antiviral activity cell-based assays. We will focus on several classes of compounds reported to be potential inhibitors of Mpro, including phenols and polyphenols, alkaloids, and terpenoids.

6.
Front Pharmacol ; 13: 859516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308211

RESUMEN

Lysosomal storage diseases (LSDs) are a group of approximately 50 genetic disorders caused by mutations in genes coding enzymes that are involved in cell degradation and transferring lipids and other macromolecules. Accumulation of lipids and other macromolecules in lysosomes leads to the destruction of affected cells. Although the clinical manifestations of different LSDs vary greatly, more than half of LSDs have symptoms of central nervous system neurodegeneration, and within each disorder there is a considerable variation, ranging from severe, infantile-onset forms to attenuated adult-onset disease, sometimes with distinct clinical features. To date, treatment options for this group of diseases remain limited, which highlights the need for further development of innovative therapeutic approaches, that can not only improve the patients' quality of life, but also provide full recovery for them. In many LSDs stem cell-based therapy showed promising results in preclinical researches. This review discusses using mesenchymal stem cells for different LSDs therapy and other neurodegenerative diseases and their possible limitations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA