Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 37(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29769405

RESUMEN

Dopaminergic neurodegeneration in Parkinson's disease (PD) is associated with abnormal dopamine metabolism by MAO-B (monoamine oxidase-B) and intracellular α-Synuclein (α-Syn) aggregates, called the Lewy body. However, the molecular relationship between α-Syn and MAO-B remains unclear. Here, we show that α-Syn directly binds to MAO-B and stimulates its enzymatic activity, which triggers AEP (asparagine endopeptidase; legumain) activation and subsequent α-Syn cleavage at N103, leading to dopaminergic neurodegeneration. Interestingly, the dopamine metabolite, DOPAL, strongly activates AEP, and the N103 fragment of α-Syn binds and activates MAO-B. Accordingly, overexpression of AEP in SNCA transgenic mice elicits α-Syn N103 cleavage and accelerates PD pathogenesis, and inhibition of MAO-B by Rasagiline diminishes α-Syn-mediated PD pathology and motor dysfunction. Moreover, virally mediated expression of α-Syn N103 induces PD pathogenesis in wild-type, but not MAO-B-null mice. Our findings thus support that AEP-mediated cleavage of α-Syn at N103 is required for the association and activation of MAO-B, mediating PD pathogenesis.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Monoaminooxidasa/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Dopamina/genética , Dopamina/metabolismo , Indanos/farmacología , Ratones , Ratones Transgénicos , Monoaminooxidasa/genética , Inhibidores de la Monoaminooxidasa/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética
2.
Exp Eye Res ; 220: 109091, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35487263

RESUMEN

The visual system uses ON and OFF pathways to signal luminance increments and decrements. Increasing evidence suggests that ON and OFF pathways have different signaling properties and serve specialized visual functions. However, it is still unclear the contribution of ON and OFF pathways to visual behavior. Therefore, we examined the effects on optomotor response and the retinal dopamine system in nob mice with ON pathway dysfunction and Vsx1-/- mice with partial OFF pathway dysfunction. Spatial frequency and contrast sensitivity thresholds were determined, and values were compared to age-matched wild-type controls. Retinas were collected immediately after visual testing to measure levels of dopamine and its metabolite, DOPAC. At 4 weeks of age, we found that nob mice had significantly reduced spatial frequency (19%) and contrast sensitivity (60%) thresholds compared to wild-type mice. Vsx1-/- mice also exhibited reductions in optomotor responses (3% in spatial frequency; 18% in contrast sensitivity) at 4 weeks, although these changes were significantly smaller than those found in nob mice. Furthermore, nob mice had significantly lower DOPAC levels (53%) and dopamine turnover (41%) compared to controls while Vsx1-/- mice displayed a transient increase in DOPAC levels at 4 weeks of age (55%). Our results show that dysfunction of ON pathways leads to reductions in contrast sensitivity, spatial frequency threshold, and retinal dopamine turnover whereas partial loss of the OFF pathway has minimal effect. We conclude that ON pathways play a critical role in visual reflexes and retinal dopamine signaling, highlighting a potential association for future investigations.


Asunto(s)
Dopamina , Retina , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Dopamina/metabolismo , Proteínas del Ojo , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Retina/metabolismo , Visión Ocular
3.
Exp Eye Res ; 214: 108866, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838844

RESUMEN

Myopia, or nearsightedness, is the most common form of refractive abnormality and is characterized by excessive ocular elongation in relation to ocular power. Retinal neurotransmitter signaling, including dopamine, is implicated in myopic ocular growth, but the visual pathways that initiate and sustain myopia remain unclear. Melanopsin-expressing retinal ganglion cells (mRGCs), which detect light, are important for visual function, and have connections with retinal dopamine cells. Here, we investigated how mRGCs influence normal and myopic refractive development using two mutant mouse models: Opn4-/- mice that lack functional melanopsin photopigments and intrinsic mRGC responses but still receive other photoreceptor-mediated input to these cells; and Opn4DTA/DTA mice that lack intrinsic and photoreceptor-mediated mRGC responses due to mRGC cell death. In mice with intact vision or form-deprivation, we measured refractive error, ocular properties including axial length and corneal curvature, and the levels of retinal dopamine and its primary metabolite, L-3,4-dihydroxyphenylalanine (DOPAC). Myopia was measured as a myopic shift, or the difference in refractive error between the form-deprived and contralateral eyes. We found that Opn4-/- mice had altered normal refractive development compared to Opn4+/+ wildtype mice, starting ∼4D more myopic but developing ∼2D greater hyperopia by 16 weeks of age. Consistent with hyperopia at older ages, 16 week-old Opn4-/- mice also had shorter eyes compared to Opn4+/+ mice (3.34 vs 3.42 mm). Opn4DTA/DTA mice, however, were more hyperopic than both Opn4+/+ and Opn4-/- mice across development ending with even shorter axial lengths. Despite these differences, both Opn4-/- and Opn4DTA/DTA mice had ∼2D greater myopic shifts in response to form-deprivation compared to Opn4+/+ mice. Furthermore, when vision was intact, dopamine and DOPAC levels were similar between Opn4-/- and Opn4+/+ mice, but higher in Opn4DTA/DTA mice, which differed with age. However, form-deprivation reduced retinal dopamine and DOAPC by ∼20% in Opn4-/- compared to Opn4+/+ mice but did not affect retinal dopamine and DOPAC in Opn4DTA/DTA mice. Lastly, systemically treating Opn4-/- mice with the dopamine precursor L-DOPA reduced their form-deprivation myopia by half compared to non-treated mice. Collectively our findings show that disruption of retinal melanopsin signaling alters the rate and magnitude of normal refractive development, yields greater susceptibility to form-deprivation myopia, and changes dopamine signaling. Our results suggest that mRGCs participate in the eye's response to myopigenic stimuli, acting partly through dopaminergic mechanisms, and provide a potential therapeutic target underling myopia progression. We conclude that proper mRGC function is necessary for correct refractive development and protection from myopia progression.


Asunto(s)
Miopía/metabolismo , Refracción Ocular/fisiología , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/fisiología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Longitud Axial del Ojo/patología , Córnea/patología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Dopaminérgicos/farmacología , Femenino , Levodopa/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miopía/fisiopatología , Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Vías Visuales/metabolismo
4.
Int J Mol Sci ; 23(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35628111

RESUMEN

The diurnal peak of phagocytosis by the retinal pigment epithelium (RPE) of photoreceptor outer segments (POS) is under circadian control and believed that this process involves interactions from the retina and RPE. Previous studies have demonstrated that a functional circadian clock exists within multiple retinal cell types and RPE. Thereby, the aim of this study was to determine whether the clock in the retina or RPE controls the diurnal phagocytic peak and whether disruption of the circadian clock in the RPE would affect cellular function and the viability during aging. To that, we generated and validated an RPE tissue-specific KO of the essential clock gene, Bmal1, and then determined the daily rhythm in phagocytic activity by the RPE in mice lacking a functional circadian clock in the retina or RPE. Then, using electroretinography, spectral domain-optical coherence tomography, and optomotor response of visual function we determined the effect of Bmal1 removal in young (6 months) and old (18 months) mice. RPE morphology and lipofuscin accumulation was determined in young and old mice. Our data shows that the clock in the RPE, rather than the retina clock, controls the diurnal phagocytic peak. Surprisingly, absence of a functional RPE clock and phagocytic peak does not result in any detectable age-related degenerative phenotype in the retina or RPE. Thus, our results demonstrate that the circadian clock in the RPE controls the daily peak of phagocytic activity. However, the absence of the clock in the RPE does not result in deterioration of photoreceptors or the RPE during aging.


Asunto(s)
Relojes Circadianos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Ritmo Circadiano/fisiología , Ratones , Fagocitos , Epitelio Pigmentado de la Retina/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(51): 13099-13104, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30498030

RESUMEN

The mammalian retina contains an autonomous circadian clock system that controls many physiological functions within this tissue. Previous studies on young mice have reported that removal of the key circadian clock gene Bmal1 from the retina affects the circadian regulation of visual function, but does not affect photoreceptor viability. Because dysfunction in the circadian system is known to affect cell viability during aging in other systems, we compared the effect of Bmal1 removal from the retina on visual function, inner retinal structure, and photoreceptor viability in young (1 to 3 months) and aged (24 to 26 months) mice. We found that removal of Bmal1 from the retina significantly affects visual information processing in both rod and cone pathways, reduces the thickness of inner retinal nuclear and plexiform layers, accelerates the decline of visual functions during aging, and reduces the viability of cone photoreceptors. Our results thus suggest that circadian clock dysfunction, caused by genetic or other means, may contribute to the decline of visual function during development and aging.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Envejecimiento/patología , Ritmo Circadiano , Retina/patología , Células Fotorreceptoras Retinianas Conos/patología , Visión Ocular , Envejecimiento/metabolismo , Animales , Relojes Circadianos , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo
6.
Exp Eye Res ; 195: 108040, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32360553

RESUMEN

Animal studies suggest that the retinal dysfunction in diabetic subjects that precedes overt clinical vasculopathy may be due to a retinal dopamine deficit. We analyzed levels of dopamine (DA) and its primary metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), in the vitreous of diabetic and non-diabetic human subjects. Adult patients undergoing pars plana vitrectomy for non-hemorrhagic indications were prospectively recruited from the Emory Eye Center in Atlanta, GA. Vitreous samples were analyzed using high performance liquid chromatography (HPLC) to measure levels of DOPAC and DA in the vitreous specimens. Vitreous samples from 9 diabetic patients and 20 from non-diabetic patients were analyzed. No eyes had apparent diabetic retinopathy. Mean normalized DA concentration in vitreous of diabetic subjects was 0.76 ± 0.12 pg/µL vs. 0.73 ± 0.08 pg/µL in non-diabetic vitreous (p = 0.849). DOPAC concentration was 8.84 ± 0.74 pg/µL in vitreous of diabetic subjects vs. 9.22 ± 0.56 pg/µL in vitreous of non-diabetic subjects (p = 0.691). No difference was observed in the concentrations of DA and DOPAC in the vitreous of people without diabetes compared to those with diabetes without retinopathy.


Asunto(s)
Diabetes Mellitus/metabolismo , Retinopatía Diabética/metabolismo , Dopamina/metabolismo , Cuerpo Vítreo/metabolismo , Biomarcadores/metabolismo , Humanos
7.
Proc Natl Acad Sci U S A ; 114(5): 1183-1188, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096359

RESUMEN

The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson's disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP+), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L's neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.


Asunto(s)
Adenilato Quinasa/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Cuerpos de Lewy/metabolismo , alfa-Sinucleína/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , Anciano , Anciano de 80 o más Años , Animales , Muerte Celular , Neuronas Dopaminérgicas/ultraestructura , Activación Enzimática , GTP Fosfohidrolasas/deficiencia , Proteínas de Unión al GTP/química , Proteínas Activadoras de GTPasa/química , Humanos , Intoxicación por MPTP/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Fosforilación , Dominios Homólogos a Pleckstrina , Agregación Patológica de Proteínas , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-fyn/deficiencia , Proteínas Proto-Oncogénicas c-fyn/metabolismo
8.
Exp Eye Res ; 180: 226-230, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30605665

RESUMEN

Retinal photoreceptors are important in visual signaling for normal eye growth in animals. We used Gnat2cplf3/cplf3 (Gnat2-/-) mice, a genetic mouse model of cone dysfunction to investigate the influence of cone signaling in ocular refractive development and myopia susceptibility in mice. Refractive development under normal visual conditions was measured for Gnat2-/- and age-matched Gnat2+/+ mice, every 2 weeks from 4 to 14 weeks of age. Weekly measurements were performed on a separate cohort of mice that underwent monocular form-deprivation (FD) in the right eye from 4 weeks of age using head-mounted diffusers. Refraction, corneal curvature, and ocular biometrics were obtained using photorefraction, keratometry and optical coherence tomography, respectively. Retinas from FD mice were harvested, and analyzed for dopamine (DA) and 3,4-dihydroxyphenylacetate (DOPAC) using high-performance liquid chromatography. Under normal visual conditions, Gnat2+/+ and Gnat2-/- mice showed similar refractive error, axial length, and corneal radii across development (p > 0.05), indicating no significant effects of the Gnat2 mutation on normal ocular refractive development in mice. Three weeks of FD produced a significantly greater myopic shift in Gnat2-/- mice compared to Gnat2+/+ controls (-5.40 ±â€¯1.33 D vs -2.28 ±â€¯0.28 D, p = 0.042). Neither the Gnat2 mutation nor FD altered retinal levels of DA or DOPAC. Our results indicate that cone pathways needed for high acuity vision in primates are not as critical for normal refractive development in mice, and that both rods and cones contribute to visual signalling pathways needed to respond to FD in mammalian eyes.


Asunto(s)
Miopía/fisiopatología , Retina/fisiopatología , Células Fotorreceptoras Retinianas Conos/patología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Dopamina/metabolismo , Femenino , Proteínas de Unión al GTP Heterotriméricas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Miopía/metabolismo , Refracción Ocular/fisiología , Retina/metabolismo , Privación Sensorial , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología
9.
Exp Eye Res ; 177: 208-212, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30240584

RESUMEN

Many types of retinal neuron modulate the distribution of their processes to ensure a uniform coverage of the retinal surface. Dendritic field area, for instance, is inversely related to the variation in cellular density for many cell types, observed either across retinal eccentricity or between different strains of mice that differ in cell number. Dopaminergic amacrine (DA) cells, by contrast, have dendritic arbors that bear no spatial relationship to the presence of their immediate homotypic neighbors, yet it remains to be determined whether their coverage upon the retina, as a population, is conserved across variation in their total number. The present study assessed the overall density of the dopaminergic plexus in the inner plexiform layer in the presence of large variation in the total number of DA cells, as well as their retinal dopamine content, to determine whether either of these features is conserved. We first compared these traits between two strains of mice (C57BL/6J and A/J) that exhibit a two-fold difference in DA cell number. We subsequently examined these same traits in littermate mice for which the pro-apoptotic Bax gene was either intact or knocked out, yielding a five-fold difference in DA cell number. In both comparisons, we found greater plexus density and DA content in the strain or condition with the greater number of DA cells. The population of DA cells, therefore, does not appear to self-regulate its process coverage to achieve a constant density as the DA mosaic is established during development, nor its functional dopamine content in maturity.


Asunto(s)
Células Amacrinas/citología , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Retina/metabolismo , Animales , Recuento de Células , Cromatografía Líquida de Alta Presión , Dendritas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína X Asociada a bcl-2/genética
10.
Ophthalmic Physiol Opt ; 38(3): 217-245, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29691928

RESUMEN

PURPOSE: Despite extensive research, mechanisms regulating postnatal eye growth and those responsible for ametropias are poorly understood. With the marked recent increases in myopia prevalence, robust and biologically-based clinical therapies to normalize refractive development in childhood are needed. Here, we review classic and contemporary literature about how circadian biology might provide clues to develop a framework to improve the understanding of myopia etiology, and possibly lead to rational approaches to ameliorate refractive errors developing in children. RECENT FINDINGS: Increasing evidence implicates diurnal and circadian rhythms in eye growth and refractive error development. In both humans and animals, ocular length and other anatomical and physiological features of the eye undergo diurnal oscillations. Systemically, such rhythms are primarily generated by the 'master clock' in the surpachiasmatic nucleus, which receives input from the intrinsically photosensitive retinal ganglion cells (ipRGCs) through the activation of the photopigment melanopsin. The retina also has an endogenous circadian clock. In laboratory animals developing experimental myopia, oscillations of ocular parameters are perturbed. Retinal signaling is now believed to influence refractive development; dopamine, an important neurotransmitter found in the retina, not only entrains intrinsic retinal rhythms to the light:dark cycle, but it also modulates refractive development. Circadian clocks comprise a transcription/translation feedback control mechanism utilizing so-called clock genes that have now been associated with experimental ametropias. Contemporary clinical research is also reviving ideas first proposed in the nineteenth century that light exposures might impact refraction in children. As a result, properties of ambient lighting are being investigated in refractive development. In other areas of medical science, circadian dysregulation is now thought to impact many non-ocular disorders, likely because the patterns of modern artificial lighting exert adverse physiological effects on circadian pacemakers. How, or if, such modern light exposures and circadian dysregulation contribute to refractive development is not known. SUMMARY: The premise of this review is that circadian biology could be a productive area worthy of increased investigation, which might lead to the improved understanding of refractive development and improved therapeutic interventions.


Asunto(s)
Ritmo Circadiano/fisiología , Ojo/crecimiento & desarrollo , Miopía , Refracción Ocular/fisiología , Progresión de la Enfermedad , Humanos , Miopía/diagnóstico , Miopía/etiología , Miopía/fisiopatología
11.
Hum Mol Genet ; 24(19): 5512-23, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26199316

RESUMEN

Environmental factors and susceptible genomes interact to determine the risk of neurodevelopmental disorders. Although few genes and environmental factors have been linked, the intervening cellular and molecular mechanisms connecting a disorder susceptibility gene with environmental factors remain mostly unexplored. Here we focus on the schizophrenia susceptibility gene DTNBP1 and its product dysbindin, a subunit of the BLOC-1 complex, and describe a neuronal pathway modulating copper metabolism via ATP7A. Mutations in ATP7A result in Menkes disease, a disorder of copper metabolism. Dysbindin/BLOC-1 and ATP7A genetically and biochemically interact. Furthermore, disruption of this pathway causes alteration in the transcriptional profile of copper-regulatory and dependent factors in the hippocampus of dysbindin/BLOC-1-null mice. Dysbindin/BLOC-1 loss-of-function alleles do not affect cell and tissue copper content, yet they alter the susceptibility to toxic copper challenges in both mammalian cells and Drosophila. Our results demonstrate that perturbations downstream of the schizophrenia susceptibility gene DTNBP1 confer susceptibility to copper, a metal that in excess is a neurotoxin and whose depletion constitutes a micronutrient deficiency.


Asunto(s)
Cobre/metabolismo , Proteínas de Drosophila/genética , Proteínas Asociadas a la Distrofina/genética , Esquizofrenia/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Células Cultivadas , ATPasas Transportadoras de Cobre , Modelos Animales de Enfermedad , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Disbindina , Proteínas Asociadas a la Distrofina/metabolismo , Predisposición Genética a la Enfermedad , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo
12.
Mol Vis ; 23: 251-262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28465657

RESUMEN

PURPOSE: MicroRNAs (miRNAs/miRs) are involved in a large number of biological functions and diseases, such as cancer, cardiovascular diseases, and diabetes. MiR-21 has been reported to target Sprouty homolog 1 (SPRY1), SMAD7, and PTEN. In this study, we examined the underlying role of miR-21 in the regulation of prorenin receptor (PRR)-mediated induction of vascular endothelial growth factor (VEGF) expression via targeting SMAD7, SPRY1, and PTEN in a hyperglycemic condition. METHODS: PRR-mediated induction of VEGF under a hyperglycemic condition (high glucose, 33mM) was studied by treating ARPE-19 cells with perindopril (10 µmol/l), which inhibits angiotensin II-mediated signaling. ARPE-19 cells exposed to normal glucose (NG, 5.5 mM) were considered as the control. To examine the role of miR-21 in the regulation of SPRY1, SMAD7, PTEN, and VEGF, ARPE-19 cells cultured in NG or high glucose were transfected with scramble negative control (Scr), a miR-21 mimic, or a miR-21 antagomir. To investigate the role of PRR and the small GTP-binding protein RAC1 in the regulation of miR-21, the expression of PRR and RAC1 was silenced by transfecting ARPE-19 cells with their corresponding siRNAs. RESULTS: Compared with the NG control, high glucose significantly induced the expression of PRR, VEGF, VEGFR2, and miR-21 but significantly suppressed the expression of SPRY1, SMAD7, and PTEN at the transcript and protein levels. In contrast, silencing the expression of PRR significantly abolished the high glucose-induced expression of VEGF, VEGFR2, and miR-21. Knockdown of RAC1 significantly attenuated the high glucose-induced expression of LOX, CTGF, and miR-21, suggesting that PRR and RAC1 are involved in the CTGF/LOX-mediated regulation of miR-21. Furthermore, high glucose dramatically increased the levels of pERK (p44), hypoxia-inducible factor (HIF-1α), and VEGF. However, this effect was antagonized by the miR-21 antagomir, indicative of the involvement of high glucose-induced miR-21 in the regulation of VEGF through ERK signaling. CONCLUSIONS: Our findings, for the first time, showed that the pleiotropic action of miR-21 induced the expression of pERK, HIF-1α, and VEGF in the high glucose condition by simultaneously targeting SPRY1, SMAD7, and PTEN in ARPE-19 cells. Therefore, miR-21 may serve as a potential therapeutic target for diabetes-induced retinal pathology.


Asunto(s)
Hiperglucemia/metabolismo , MicroARNs/fisiología , Receptores de Superficie Celular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal/fisiología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Línea Celular , Glucosa/farmacología , Humanos , Immunoblotting , Proteínas de la Membrana/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Epitelio Pigmentado de la Retina/efectos de los fármacos , Proteína smad7/metabolismo
13.
J Recept Signal Transduct Res ; 37(6): 560-568, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28840773

RESUMEN

The stimulation of angiotensin II (Ang II), the effector peptide of renin-angiotensin system, has been reported to increase the expression of vascular endothelial growth factor (VEGF) through the activation of the Ang II type 1 receptor (AT1R). In this study, we investigated whether hyperglycemia (HG, 33 mM glucose) in ARPE-19 cells could promote the expression of VEGF independently of Ang II through prorenin receptor (PRR), via an NADPH oxidase (Nox)-dependent mechanism. ARPE-19 cells were treated with the angiotensin converting enzyme (ACE) inhibitor perindopril to block the synthesis of Ang II. Treatment with HG induced VEGF expression in ARPE-19 cells, which was attenuated by pretreatment with the inhibitors of Nox, but not those of nitric oxide synthase, xanthine oxidase and mitochondrial O2 synthesis. In addition, Nox-derived [Formula: see text] and H2O2 signaling in the regulation of VEGF was determined by using both polyethylene glycol (PEG)-catalase (CAT) and PEG-superoxide dismutase (SOD). We demonstrated that small interfering RNA (siRNA)-mediated knockdown of PRR, Nox2 and Nox4 significantly reduced the HG-induced stimulation of VEGF. On the other hand, Nox4 overexpression significantly potentiated PRR-induced stimulation of VEGF under hyperglycemia in ARPE-19 cells. Furthermore, Nox4 was shown to be associated with enhanced activities of ERK1/2 and NF-κB (p65), indicating their involvement in PRR-induced activation of VEGF under HG in ARPE-19 cells. Our results support the hypothesis that Nox4-derived reactive oxygen species (ROS) signaling is implicated in the hyperglycemia-induced increase of VEGF expression through PRR in ARPE-19 cells. However, further work is needed to evaluate the role of PRR and Nox-s in HG-induced stimulation of VEGF in vivo.


Asunto(s)
Hiperglucemia/genética , NADPH Oxidasa 2/genética , NADPH Oxidasa 4/genética , Receptores de Superficie Celular/genética , Factor A de Crecimiento Endotelial Vascular/genética , Regulación de la Expresión Génica/genética , Humanos , Hiperglucemia/inducido químicamente , Hiperglucemia/patología , Mitocondrias/genética , Mitocondrias/metabolismo , NADPH Oxidasa 2/antagonistas & inhibidores , NADPH Oxidasa 4/antagonistas & inhibidores , Oxidación-Reducción , Estrés Oxidativo/genética , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptores de Superficie Celular/antagonistas & inhibidores , Renina/genética , Sistema Renina-Angiotensina/genética , Transducción de Señal/efectos de los fármacos , Receptor de Prorenina
14.
Mol Vis ; 22: 1291-1308, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27829784

RESUMEN

PURPOSE: Interphotoreceptor retinoid-binding protein (IRBP) is abundant in the subretinal space and binds retinoids and lipophilic molecules. The expression of IRBP begins precociously early in mouse eye development. IRBP-deficient (KO) mice show less cell death in the inner retinal layers of the retina before eyelid opening compared to wild-type C57BL/6J (WT) controls and eventually develop profound myopia. Thus, IRBP may play a role in eye development before visually-driven phenomena. We report comparative observations during the course of the natural development of eyes in WT and congenic IRBP KO mice that suggest IRBP is necessary at the early stages of mouse eye development for correct function and development to exist in later stages. METHODS: We observed the natural development of congenic WT and IRBP KO mice, monitoring several markers of eye size and development, including haze and clarity of optical components in the eye, eye size, axial length, immunohistological markers of differentiation and eye development, visually guided behavior, and levels of a putative eye growth stop signal, dopamine. We conducted these measurements at several ages. Slit-lamp examinations were conducted at post-natal day (P)21. Fundus and spectral domain optical coherence tomography (SD-OCT) images were compared at P15, P30, P45, and P80. Enucleated eyes from P5 to P10 were measured for weight, and ocular dimensions were measured with a noncontact light-emitting diode (LED) micrometer. We counted the cells that expressed tyrosine hydroxylase (TH-positive cells) at P23-P36 using immunohistochemistry on retinal flatmounts. High-performance liquid chromatography (HPLC) was used to analyze the amounts of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) at P7-P60. Monocular form deprivation in the right eye was induced using head-mounted goggles from P28 to P56. RESULTS: Eye elongation and eye size in the IRBP KO mice began to increase at P7 compared to the WT mice. This difference increased until P12, and the difference was maintained thereafter. SD-OCT images in live mice confirmed previously reported retinal thinning of the outer nuclear layer in the IRBP KO mice compared to the WT mice from P15 to P80. Slit-lamp and fundoscopy examination outcomes did not differ between the WT and KO mice. SD-OCT measurements of the optical axis components showed that the only factor contributing to excess optical axis length was the depth of the vitreous body. No other component of optical axis length (including corneal thickness, anterior chamber depth, and lens thickness) was different from that of the WT mouse. The refractive power of the IRBP KO mice did not change in response to form deprivation. The number of retinal TH-positive cells was 28% greater in the IRBP KO retinas compared to the WT mice at P30. No significant differences were observed in the steady-state retinal DA or DOPAC levels or in the DOPAC/DA ratios between the WT and IRBP KO mice. CONCLUSIONS: The IRBP KO mouse eye underwent precocious development and rapid eye size growth temporally about a day sooner than the WT mouse eye. Eye size began to differ between the WT and KO mice before eyelid opening, indicating no requirement for focus-dependent vision, and suggesting a developmental abnormality in the IRBP KO mouse eye that precedes form vision-dependent emmetropization. Additionally, the profoundly myopic KO eye did not respond to form deprivation compared to the non-deprived contralateral eye. Too much growth occurred in some parts of the eye, possibly upsetting a balance among size, differentiation, and focus-dependent growth suppression. Thus, the loss of IRBP may simply cause growth that is too rapid, possibly due to a lack of sequestration or buffering of morphogens that normally would bind to IRBP but are unbound in the IRBP KO eye. Despite the development of profound myopia, the DA levels in the IRBP KO mice were not statistically different from those in the WT mice, even with the excess of TH-positive cells in the IRBP KO mice compared to the WT mice. Overall, these data suggest that abnormal eye elongation in the IRBP KO mouse is independent of, precedes, and is epistatic to the process(es) of visually-driven refractive development.


Asunto(s)
Longitud Axial del Ojo/patología , Ojo/crecimiento & desarrollo , Miopía/etiología , Proteínas de Unión al Retinol/deficiencia , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Modelos Animales de Enfermedad , Dopamina/metabolismo , Proteínas del Ojo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miopía/patología , Retina/patología , Tomografía de Coherencia Óptica
15.
J Neurosci ; 34(3): 726-36, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431431

RESUMEN

Dopamine (DA) functions as an essential neuromodulator in the brain and retina such that disruptions in the dopaminergic system are associated with common neurologic disorders such as Parkinson's disease. Although a reduction in DA content has been observed in diabetes, its effects in the development of diabetes-induced neuropathy remains unknown. Because the retina is rich in DA and has a well known diabetes-induced pathology (diabetic retinopathy or DR), this study was designed to examine the role of retinal DA deficiency in early visual defects in DR. Using rodent models of type 1 diabetes mellitus, we investigated whether diabetes caused a reduction in retinal DA content in both rats and mice and determined whether restoring DA levels or activating specific DA receptor pathways could improve visual function (evaluated with optokinetic tracking response) of diabetic mice, potentially via improvement of retinal function (assessed with electroretinography). We found that diabetes significantly reduced DA levels by 4 weeks in rats and by 5 weeks in mice, coincident with the initial detection of visual deficits. Treatment with l-DOPA, a DA precursor, improved overall retinal and visual functions in diabetic mice and acute treatment with DA D1 or D4 receptor agonists improved spatial frequency threshold or contrast sensitivity, respectively. Together, our results indicate that retinal DA deficiency is an underlying mechanism for early, diabetes-induced visual dysfunction and suggest that therapies targeting the retinal dopaminergic system may be beneficial in early-stage DR.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Retinopatía Diabética/metabolismo , Modelos Animales de Enfermedad , Dopamina/deficiencia , Retina/metabolismo , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Retinopatía Diabética/tratamiento farmacológico , Femenino , Levodopa/farmacología , Levodopa/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Long-Evans , Retina/efectos de los fármacos
16.
Am J Hum Genet ; 90(2): 331-9, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325362

RESUMEN

Complete congenital stationary night blindness (cCSNB) is a clinically and genetically heterogeneous group of retinal disorders characterized by nonprogressive impairment of night vision, absence of the electroretinogram (ERG) b-wave, and variable degrees of involvement of other visual functions. We report here that mutations in GPR179, encoding an orphan G protein receptor, underlie a form of autosomal-recessive cCSNB. The Gpr179(nob5/nob5) mouse model was initially discovered by the absence of the ERG b-wave, a component that reflects depolarizing bipolar cell (DBC) function. We performed genetic mapping, followed by next-generation sequencing of the critical region and detected a large transposon-like DNA insertion in Gpr179. The involvement of GPR179 in DBC function was confirmed in zebrafish and humans. Functional knockdown of gpr179 in zebrafish led to a marked reduction in the amplitude of the ERG b-wave. Candidate gene analysis of GPR179 in DNA extracted from patients with cCSNB identified GPR179-inactivating mutations in two patients. We developed an antibody against mouse GPR179, which robustly labeled DBC dendritic terminals in wild-type mice. This labeling colocalized with the expression of GRM6 and was absent in Gpr179(nob5/nob5) mutant mice. Our results demonstrate that GPR179 plays a critical role in DBC signal transduction and expands our understanding of the mechanisms that mediate normal rod vision.


Asunto(s)
Mutación , Miopía/genética , Miopía/fisiopatología , Ceguera Nocturna/genética , Ceguera Nocturna/fisiopatología , Receptores Acoplados a Proteínas G/genética , Células Bipolares de la Retina/metabolismo , Células Bipolares de la Retina/fisiología , Animales , Mapeo Cromosómico/métodos , Adaptación a la Oscuridad/genética , Electrorretinografía/métodos , Enfermedades Hereditarias del Ojo , Técnicas de Silenciamiento del Gen/métodos , Enfermedades Genéticas Ligadas al Cromosoma X , Heterocigoto , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Miopía/metabolismo , Ceguera Nocturna/metabolismo , Linaje , Receptores de Glutamato Metabotrópico/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Transducción de Señal , Pez Cebra
17.
Mol Vis ; 21: 224-35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25802486

RESUMEN

PURPOSE: The (pro)renin receptor (PRR), a component of the renin-angiotensin system (RAS), plays an important role in the physiologic and pathophysiological regulation of blood pressure and fluid/electrolyte homeostasis. The RAS including the PRR has been identified in retinal endothelial cells and other ocular tissues. In this study, the potential involvement of miRNAs in the posttranscriptional regulation of PRR was investigated in human retinal endothelial cells (hRECs) under high glucose (HG) conditions. METHODS: miRNA-152 (miR-152) was identified in silico as a potential regulator of PRR, and this was confirmed by quantitative real-time PCR (qRT-PCR) and PRR 3'-untranslated region (UTR) reporter assays. Using RNA interference, both AT1R and PRR were implicated in the HG-mediated induction of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR-2), and transforming growth factor ß1 (TGFß1). RESULTS: The downregulation of miR-152 was observed in hRECs and rat retinal tissues under HG conditions. In parallel, PRR (target of miR-152), VEGF, VEGFR-2, and TGFß1 at mRNA levels were elevated. However, the transfection of hRECs with miR-152 mimics in HG conditions resulted in the suppression of the PRR expression, as well as reduced VEGF, VEGFR-2, and TGFß1 production. This was reversed by transfecting cells with the antisense (antagomir) of miR-152, suggesting the glucose-induced upregulation of VEGF, VEGFR-2, and TGFß1 is mediated through PRR, and this regulation is likely achieved through the HG-mediated modulation of miRNAs. CONCLUSIONS: We have demonstrated that miR-152 interacting with PRR regulates downstream VEGF, VRGFR-2, and TGFß1 expressions in hRECs in HG conditions. These studies suggest miR-152 and PRR may play a role in the pathogenesis of diabetic retinopathy (DR).


Asunto(s)
Células Endoteliales/metabolismo , MicroARNs/genética , Receptores de Superficie Celular/genética , Retina/metabolismo , Factor de Crecimiento Transformador beta1/genética , ATPasas de Translocación de Protón Vacuolares/genética , Factor A de Crecimiento Endotelial Vascular/genética , Regiones no Traducidas 3' , Animales , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Masculino , MicroARNs/metabolismo , Interferencia de ARN , Ratas , Ratas Long-Evans , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Superficie Celular/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/genética , Retina/citología , Retina/efectos de los fármacos , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
Exp Eye Res ; 140: 187-189, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26368851

RESUMEN

Neonatal aphakia is associated with retardation of the axial elongation of the neonatal eye. In contrast, form deprivation increases axial elongation, an effect that has been associated with decreased retinal dopamine metabolism. The present investigation was conducted to test the hypothesis that neonatal aphakia induces an effect on the levels of retinal dopamine opposite to form deprivation. Lensectomy and vitrectomy were performed on the right eyes of rhesus monkeys at approximately 1 week of age; their left eyes were unmanipulated. Axial length was measured by A-scan ultrasonography. Prior to surgery, mean axial length of the right and left eyes was identical. Following lens removal, both eyes continued to elongate, however the aphakic eyes elongated at a slower rate resulting in a significant shorter axial length compared to that of the unmanipulated eye. Removal of the crystalline lens had no effect on steady-state dopamine levels in either central or peripheral retina. However, levels of the dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid were significantly elevated in central retina, but not in the peripheral retina of aphakic eyes. Our results support the hypothesis that dopamine is a component of the retinal signaling pathways that are involved in the regulation of eye growth and emmetropization.


Asunto(s)
Ácido 3,4-Dihidroxifenilacético/metabolismo , Afaquia Poscatarata/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Ácido Homovanílico/metabolismo , Miopía/metabolismo , Retina/metabolismo , Animales , Animales Recién Nacidos , Longitud Axial del Ojo , Cromatografía Líquida de Alta Presión , Cristalino/cirugía , Macaca mulatta , Transducción de Señal , Vitrectomía
19.
Exp Eye Res ; 137: 79-83, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26072023

RESUMEN

The ON pathway mutation in nob mice is associated with altered refractive development, and an increased susceptibility to form-deprivation (FD) myopia. In this study, we used mGluR6-/- mice, another ON pathway mutant, to determine whether the nob phenotype was due to the Nyx mutation or abnormal ON pathway transmission. Refractive development under a normal visual environment for mGluR6-/- and age-matched wild-type (WT) mice was measured every 2 weeks from 4 to 16 weeks of age. The response to monocular FD from 4 weeks of age was measured weekly in a separate cohort of mice. Refraction and ocular biometry were obtained using a photorefractor and optical coherence tomography. Retinas were harvested at 16 weeks, and analyzed for dopamine (DA) and DOPAC using high-performance liquid chromatography. Under normal conditions, mGluR6-/- mice were significantly more myopic than their WT controls (refraction at 12 weeks; WT: 9.40 ± 0.16 D, mGluR6-/-: 6.91 ± 0.38 D). Similar to nob mice, two weeks of FD resulted in a significant myopic shift of -5.57 ± 0.72 D in mGluR6-/- mice compared to -1.66 ± 0.19 D in WT animals. No significant axial length changes were observed with either normal or FD visual conditions. At 16 weeks, mGluR6-/- retinas showed significantly lower DOPAC levels (111.2 ± 33.0 pg/mg) compared to their WT counterparts (197.5 ± 11.2 pg/mg). Retinal DA levels were similar between the different genotypes. Our results indicate that reduced retinal DA metabolism/turnover may be associated with increased susceptibility to myopia in mice with ON pathway defect mutations.


Asunto(s)
ADN/genética , Predisposición Genética a la Enfermedad , Mutación , Miopía/genética , Receptores de Glutamato Metabotrópico/genética , Refracción Ocular/fisiología , Animales , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Miopía/metabolismo , Miopía/fisiopatología , Receptores de Glutamato Metabotrópico/metabolismo , Tomografía de Coherencia Óptica
20.
Tetrahedron Lett ; 56(23): 3413-3415, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26028783

RESUMEN

N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC) is a potent activator of the TrkB receptor in mammalian neurons and of interest because of its potential therapeutic uses. In the absence of a commercial supply of HIOC, we sought to produce several grams of material. However, a synthesis of HIOC has never been published. Herein we report the preparation of HIOC by the chemoselective N-acylation of serotonin, without using blocking groups in the key acylation step.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA