Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 20(3): 375-386, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864200

RESUMEN

Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we propose best practices, quality controls and data-reporting recommendations to assist in the broad adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion forums are available at https://single-cell.net/guidelines .


Asunto(s)
Benchmarking , Proteómica , Benchmarking/métodos , Proteómica/métodos , Reproducibilidad de los Resultados , Proteínas/análisis , Espectrometría de Masas en Tándem/métodos , Proteoma/análisis
2.
J Proteome Res ; 23(6): 2230-2240, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38690845

RESUMEN

Deep proteomic profiling of complex biological and medical samples available at low nanogram and subnanogram levels is still challenging. Thorough optimization of settings, parameters, and conditions in nanoflow liquid chromatography-tandem mass spectrometry (MS)-based proteomic profiling is crucial for generating informative data using amount-limited samples. This study demonstrates that by adjusting selected instrument parameters, e.g., ion injection time, automated gain control, and minimally altering the conditions for resuspending or storing the sample in solvents of different compositions, up to 15-fold more thorough proteomic profiling can be achieved compared to conventionally used settings. More specifically, the analysis of 1 ng of the HeLa protein digest standard by Q Exactive HF-X Hybrid Quadrupole-Orbitrap and Orbitrap Fusion Lumos Tribrid mass spectrometers yielded an increase from 1758 to 5477 (3-fold) and 281 to 4276 (15-fold) peptides, respectively, demonstrating that higher protein identification results can be obtained using the optimized methods. While the instruments applied in this study do not belong to the latest generation of mass spectrometers, they are broadly used worldwide, which makes the guidelines for improving performance desirable to a wide range of proteomics practitioners.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Humanos , Espectrometría de Masas en Tándem/métodos , Células HeLa , Cromatografía Liquida/métodos , Proteoma/análisis , Péptidos/análisis , Péptidos/química
3.
J Proteome Res ; 22(8): 2641-2659, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37467362

RESUMEN

Repeated measures experimental designs, which quantify proteins in biological subjects repeatedly over multiple experimental conditions or times, are commonly used in mass spectrometry-based proteomics. Such designs distinguish the biological variation within and between the subjects and increase the statistical power of detecting within-subject changes in protein abundance. Meanwhile, proteomics experiments increasingly incorporate tandem mass tag (TMT) labeling, a multiplexing strategy that gains both relative protein quantification accuracy and sample throughput. However, combining repeated measures and TMT multiplexing in a large-scale investigation presents statistical challenges due to unique interplays of between-mixture, within-mixture, between-subject, and within-subject variation. This manuscript proposes a family of linear mixed-effects models for differential analysis of proteomics experiments with repeated measures and TMT multiplexing. These models decompose the variation in the data into the contributions from its sources as appropriate for the specifics of each experiment, enable statistical inference of differential protein abundance, and recognize a difference in the uncertainty of between-subject versus within-subject comparisons. The proposed family of models is implemented in the R/Bioconductor package MSstatsTMT v2.2.0. Evaluations of four simulated datasets and four investigations answering diverse biological questions demonstrated the value of this approach as compared to the existing general-purpose approaches and implementations.


Asunto(s)
Proyectos de Investigación , Espectrometría de Masas en Tándem , Humanos , Proteoma/análisis
4.
Trends Analyt Chem ; 1652023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37388554

RESUMEN

Tissues and other cell populations are highly heterogeneous at the cellular level, owing to differences in expression and modifications of proteins, polynucleotides, metabolites, and lipids. The ability to assess this heterogeneity is crucial in understanding numerous biological phenomena, including various pathologies. Traditional analyses apply bulk-cell sampling, which masks the potentially subtle differences between cells that can be important in understanding of biological processes. These limitations due to cell heterogeneity inspired significant efforts and interest toward the analysis of smaller sample sizes, down to the level of individual cells. Among the emerging techniques, the unique capabilities of capillary electrophoresis coupled with mass spectrometry (CE-MS) made it a prominent technique for proteomics and metabolomics analysis at the single-cell level. In this review, we focus on the application of CE-MS in the proteomic and metabolomic profiling of single cells and highlight the recent advances in sample preparation, separation, MS acquisition, and data analysis.

5.
Analyst ; 148(3): 665-674, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36625279

RESUMEN

Fragmentation of therapeutic proteins is a potential critical quality attribute (CQA) that can occur in vivo or during manufacturing or storage due to enzymatic and non-enzymatic degradation pathways, such as hydrolysis, peroxide mediation, and acid/metal catalysis. Characterization of the fragmentation pattern of a therapeutic protein is traditionally accomplished using capillary gel electrophoresis with UV detection under both non-reducing and reducing conditions (nrCGE and rCGE). However, such methods are incompatible with direct coupling to mass spectrometry (MS) due to the use of anionic surfactants, e.g., sodium dodecyl sulfate (SDS). Here, we present a novel method to characterize size-based fragmentation variants of a new biotherapeutic kind using microfluidic ZipChip® capillary zone electrophoresis (mCZE) system interfaced with mass spectrometry (MS) to determine the molecular masses of fragments. A new modality of immuno-oncology therapy, bispecific antigen-binding biotherapeutic, was chosen to investigate its fragmentation pattern using mCZE-MS for the first time, according to our knowledge. Bispecific antigen-binding biotherapeutic samples from different stages of downstream column purification and forced degradation conditions were analyzed. The results were cross-validated with denaturing size-exclusion chromatography-mass spectrometry and conventional rSDS-CGE. In this study, we demonstrated that mCZE-MS could separate and characterize 12-40 kDa bispecific antigen-binding biotherapeutic fragments rapidly (within ≤12 minutes), with higher resolution and better sensitivity than traditional LC-MS methods.


Asunto(s)
Anticuerpos Monoclonales , Microfluídica , Anticuerpos Monoclonales/química , Espectrometría de Masas/métodos , Cromatografía en Gel , Electroforesis Capilar/métodos
6.
J Sep Sci ; 46(18): e2300440, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37528733

RESUMEN

Ultralow flow LC employs ultra-narrow bore columns and mid-range pL/min to low nL/min flow rates (i.e., ≤20 nL/min). The separation columns that are used under these conditions are typically 2-30 µm in inner diameter. Ultralow flow LC systems allow for exceptionally high sensitivity and frequently high resolution. There has been an increasing interest in the analysis of scarce biological samples, for example, circulating tumor cells, extracellular vesicles, organelles, and single cells, and ultralow flow LC was efficiently applied to such samples. Hence, advances towards dedicated ultralow flow LC instrumentation, technical approaches, and higher throughput (e.g., tens-to-hundreds of single cells analyzed per day) were recently made. Here, we review the types of ultralow flow LC technology, followed by a discussion of selected representative ultralow flow LC applications, focusing on the progress made in bioanalysis of amount-limited samples during the last 10 years. We also discuss several recently reported high-sensitivity applications utilizing flow rates up to 100 nL/min, which are below commonly used nanoLC flow rates. Finally, we discuss the path forward for future developments of ultralow flow LC.


Asunto(s)
Cromatografía Liquida , Cromatografía Liquida/métodos
7.
J Proteome Res ; 21(10): 2453-2461, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36112031

RESUMEN

In this work, we pioneered the assessment of coupling high-field asymmetric waveform ion mobility spectrometry (FAIMS) with ultrasensitive capillary electrophoresis hyphenated with tandem mass spectrometry (CE-MS/MS) to achieve deeper proteome coverage of low nanogram amounts of digested cell lysates. An internal stepping strategy using three or four compensation voltages per analytical run with varied cycle times was tested to determine optimal FAIMS settings and MS parameters for the CE-FAIMS-MS/MS method. The optimized method applied to bottom-up proteomic analysis of 1 ng of HeLa protein digest standard identified 1314 ± 30 proteins, 4829 ± 200 peptide groups, and 7577 ± 163 peptide spectrum matches (PSMs) corresponding to a 16, 25, and 22% increase, respectively, over CE-MS/MS alone, without FAIMS. Furthermore, the percentage of acquired MS/MS spectra that resulted in PSMs increased nearly 2-fold with CE-FAIMS-MS/MS. Label-free quantitation of proteins and peptides was also assessed to determine the precision of replicate analyses from FAIMS methods with increased cycle times. Our results also identified from 1 ng of HeLa protein digest without any prior enrichment 76 ± 9 phosphopeptides, 18% of which were multiphosphorylated. These results represent a 46% increase in phosphopeptide identifications over the control experiments without FAIMS yielding 2.5-fold more multiphosphorylated peptides.


Asunto(s)
Espectrometría de Movilidad Iónica , Proteómica , Electroforesis Capilar , Espectrometría de Movilidad Iónica/métodos , Fosfopéptidos , Proteoma , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
8.
J Proteome Res ; 21(1): 151-163, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34843255

RESUMEN

Microscale-based separations are increasingly being applied in the field of metabolomics for the analysis of small-molecule metabolites. These methods have the potential to provide improved sensitivity, less solvent waste, and reduced sample-size requirements. Ion-pair free microflow-based global metabolomics methods, which we recently reported, were further compared to analytical flow ion-pairing reagent containing methods using a sample set from a urea cycle disorder (UCD) mouse model. Mouse urine and brain homogenate samples representing healthy, diseased, and disease-treated animals were analyzed by both methods. Data processing was performed using univariate and multivariate techniques followed by analyte trend analysis. The microflow methods performed comparably to the analytical flow ion-pairing methods with the ability to separate the three sample groups when analyzed by partial least-squares analysis. The number of detected metabolic features present after each data processing step was similar between the microflow-based methods and the ion-pairing methods in the negative ionization mode. The observed analyte trend and coverage of known UCD biomarkers were the same for both evaluated approaches. The 12.5-fold reduction in sample injection volume required for the microflow-based separations highlights the potential of this method to support studies with sample-size limitations.


Asunto(s)
Metabolómica , Trastornos Innatos del Ciclo de la Urea , Animales , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Ratones , Solventes/química , Trastornos Innatos del Ciclo de la Urea/diagnóstico
9.
Anal Chem ; 94(2): 704-713, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34983182

RESUMEN

In this work, we developed an ultra-sensitive CE-MS/MS method for bottom-up proteomics analysis of limited samples, down to sub-nanogram levels of total protein. Analysis of 880 and 88 pg of the HeLa protein digest standard by CE-MS/MS yielded ∼1100 ± 46 and ∼160 ± 59 proteins, respectively, demonstrating higher protein and peptide identifications than the current state-of-the-art CE-MS/MS-based proteomic analyses with similar amounts of sample. To demonstrate potential applications of our ultra-sensitive CE-MS/MS method for the analysis of limited biological samples, we digested 500 and 1000 HeLa cells using a miniaturized in-solution digestion workflow. From 1-, 5-, and 10-cell equivalents injected from the resulted digests, we identified 744 ± 127, 1139 ± 24, and 1271 ± 6 proteins and 3353 ± 719, 5709 ± 513, and 8527 ± 114 peptide groups, respectively. Furthermore, we performed a comparative assessment of CE-MS/MS and two reversed-phased nano-liquid chromatography (RP-nLC-MS/MS) methods (monolithic and packed columns) for the analysis of a ∼10 ng HeLa protein digest standard. Our results demonstrate complementarity in the protein- and especially peptide-level identifications of the evaluated CE-MS- and RP-nLC-MS-based methods. The techniques were further assessed to detect post-translational modifications and highlight the strengths of the CE-MS/MS approach in identifying potentially important and biologically relevant modified peptides. With a migration window of ∼60 min, CE-MS/MS identified ∼2000 ± 53 proteins on average from a single injection of ∼8.8 ng of the HeLa protein digest standard. Additionally, an average of 232 ± 10 phosphopeptides and 377 ± 14 N-terminal acetylated peptides were identified in CE-MS/MS analyses at this sample amount, corresponding to 2- and 1.5-fold more identifications for each respective modification found by nLC-MS/MS methods.


Asunto(s)
Proteómica , Espectrometría de Masa por Ionización de Electrospray , Electroforesis Capilar/métodos , Células HeLa , Humanos , Fosfopéptidos , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
10.
Anal Chem ; 94(41): 14358-14367, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36194750

RESUMEN

Proteomic analysis of limited samples and single cells requires specialized methods that prioritize high sensitivity and minimize sample loss. Consequently, sample preparation is one of the most important steps in limited sample analysis workflows to prevent sample loss. In this work, we have eliminated sample handling and transfer steps by processing intact cells directly in the separation capillary, online with capillary electrophoresis coupled to tandem mass spectrometry (CE-MS/MS) for top-down proteomic (TDP) analysis of low numbers of mammalian cancer cells (<10) and single cells. We assessed spray voltage injection of intact cells from a droplet of cell suspension (∼1000 cells) and demonstrated 0-9 intact cells injected with a dependency on the duration of spray voltage application. Spray voltage applied for 2 min injected an average of 7 ± 2 cells and resulted in 33-57 protein and 40-88 proteoform identifications (N = 4). To analyze single cells, manual cell loading by hydrodynamic pressure was used. Replicates of single HeLa cells (N = 4) lysed on the capillary and analyzed by CE-MS/MS demonstrated a range of 17-40 proteins and 23-50 proteoforms identified. An additional cell line, THP-1, was analyzed at the single-cell level, and proteoform abundances were compared to show the capabilities of single-cell TDP (SC-TDP) for assessing cellular heterogeneity. This study demonstrates the initial application of TDP in single-cell proteome-level profiling. These results represent the highest reported identifications from TDP analysis of a single HeLa cell and prove the tremendous potential for CE-MS/MS on-capillary sample processing for high sensitivity analysis of single cells and limited samples.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Animales , Proteínas de Unión al ADN , Células HeLa , Humanos , Mamíferos , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
11.
Nat Methods ; 16(7): 587-594, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249407

RESUMEN

One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.


Asunto(s)
Benchmarking , Espectrometría de Masas/métodos , Proteínas/química , Desnaturalización Proteica , Procesamiento Proteico-Postraduccional , Proteómica
12.
J Proteome Res ; 20(3): 1676-1688, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33625864

RESUMEN

In-depth LC-MS-based proteomic profiling of limited biological and clinical samples, such as rare cells or tissue sections from laser capture microdissection or microneedle biopsies, has been problematic due, in large, to the inefficiency of sample preparation and attendant sample losses. To address this issue, we developed on-microsolid-phase extraction tip (OmSET)-based sample preparation for limited biological samples. OmSET is simple, efficient, reproducible, and scalable and is a widely accessible method for processing ∼200 to 10,000 cells. The developed method benefits from minimal sample processing volumes (1-3 µL) and conducting all sample processing steps on-membrane within a single microreactor. We first assessed the feasibility of using micro-SPE tips for nanogram-level amounts of tryptic peptides, minimized the number of required sample handling steps, and reduced the hands-on time. We then evaluated the capability of OmSET for quantitative analysis of low numbers of human monocytes. Reliable and reproducible label-free quantitation results were obtained with excellent correlations between protein abundances and the amounts of starting material (R2 = 0.93) and pairwise correlations between sample processing replicates (R2 = 0.95) along with the identification of approximately 300, 1800, and 2000 protein groups from injected ∼10, 100, and 500 cell equivalents, resulting from processing approximately 200, 2000, and 10,000 cells, respectively.


Asunto(s)
Proteómica , Manejo de Especímenes , Cromatografía Liquida , Humanos , Espectrometría de Masas , Flujo de Trabajo
13.
Anal Chem ; 93(30): 10403-10410, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34291903

RESUMEN

Adeno-associated viruses (AAVs) comprise an area of rapidly growing interest due to their ability to act as a gene delivery vehicle in novel gene therapy strategies and vaccine development. Peptide mapping is a common technique in the biopharmaceutical industry to confirm the correct sequence, product purity, post-translational modifications (PTMs), and stability. However, conventional peptide mapping is time-consuming and has proven difficult to reproduce with viral capsids because of their high structural stability and the suboptimal localization of trypsin cleavage sites in the AAV protein sequences. In this study, we present an optimized peptide mapping-based workflow that provides thorough characterization within 1 day. This workflow is also highly reproducible due to its simplicity having very few steps and is easy to perform proteolytic digestion utilizing thermally stable pepsin, which is active at 70 °C in acidic conditions. The acidic conditions of the peptic digestions drive viral capsid denaturation and improve cleavage site accessibility. We characterized the efficiency and ease of digestion through peptide mapping of the AAV2 viral capsid protein. Using nanoflow liquid chromatography coupled with tandem mass spectrometry, we achieved 100% sequence coverage of the low-abundance VP1 capsid protein with a digestion process taking only 10 min to prepare and 45 min to complete the digestion.


Asunto(s)
Cápside , Dependovirus , Proteínas de la Cápside/genética , Dependovirus/genética , Digestión , Humanos , Mapeo Peptídico
14.
Anal Chem ; 93(4): 1991-2002, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33433994

RESUMEN

We developed a highly sensitive method for profiling of N-glycans released from proteins based on capillary zone electrophoresis coupled to electrospray ionization mass spectrometry (CZE-ESI-MS) and applied the technique to glycan analysis of plasma and blood-derived isolates. The combination of dopant-enriched nitrogen (DEN)-gas introduced into the nanoelectrospray microenvironment with optimized ionization, desolvation, and CZE-MS conditions improved the detection sensitivity up to ∼100-fold, as directly compared to the conventional mode of instrument operation through peak intensity measurements. Analyses without supplemental pressure increased the resolution ∼7-fold in the separation of closely related and isobaric glycans. The developed method was evaluated for qualitative and quantitative glycan profiling of three types of blood isolates: plasma, total serum immunoglobulin G (IgG), and total plasma extracellular vesicles (EVs). The comparative glycan analysis of IgG and EV isolates and total plasma was conducted for the first time and resulted in detection of >200, >400, and >500 N-glycans for injected sample amounts equivalent to <500 nL of blood. Structural CZE-MS2 analysis resulted in the identification of highly diverse glycans, assignment of α-2,6-linked sialic acids, and differentiation of positional isomers. Unmatched depth of N-glycan profiling was achieved compared to previously reported methods for the analysis of minute amounts of similar complexity blood isolates.


Asunto(s)
Electroforesis Capilar/métodos , Vesículas Extracelulares/química , Inmunoglobulina G/sangre , Espectrometría de Masas/métodos , Plasma/química , Polisacáridos/química , Sensibilidad y Especificidad
15.
Bioinformatics ; 36(Suppl_2): i745-i753, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33381824

RESUMEN

MOTIVATION: Accurate estimation of false discovery rate (FDR) of spectral identification is a central problem in mass spectrometry-based proteomics. Over the past two decades, target-decoy approaches (TDAs) and decoy-free approaches (DFAs) have been widely used to estimate FDR. TDAs use a database of decoy species to faithfully model score distributions of incorrect peptide-spectrum matches (PSMs). DFAs, on the other hand, fit two-component mixture models to learn the parameters of correct and incorrect PSM score distributions. While conceptually straightforward, both approaches lead to problems in practice, particularly in experiments that push instrumentation to the limit and generate low fragmentation-efficiency and low signal-to-noise-ratio spectra. RESULTS: We introduce a new decoy-free framework for FDR estimation that generalizes present DFAs while exploiting more search data in a manner similar to TDAs. Our approach relies on multi-component mixtures, in which score distributions corresponding to the correct PSMs, best incorrect PSMs and second-best incorrect PSMs are modeled by the skew normal family. We derive EM algorithms to estimate parameters of these distributions from the scores of best and second-best PSMs associated with each experimental spectrum. We evaluate our models on multiple proteomics datasets and a HeLa cell digest case study consisting of more than a million spectra in total. We provide evidence of improved performance over existing DFAs and improved stability and speed over TDAs without any performance degradation. We propose that the new strategy has the potential to extend beyond peptide identification and reduce the need for TDA on all analytical platforms. AVAILABILITYAND IMPLEMENTATION: https://github.com/shawn-peng/FDR-estimation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Algoritmos , Bases de Datos de Proteínas , Células HeLa , Humanos , Péptidos
16.
Anal Chem ; 92(21): 14702-14712, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33054160

RESUMEN

In this work, we pioneered a combination of ultralow flow (ULF) high-efficiency ultranarrow bore monolithic LC columns coupled to MS via a high-field asymmetric waveform ion mobility spectrometry (FAIMS) interface to evaluate the potential applicability for high sensitivity, robust, and reproducible proteomic profiling of low nanogram-level complex biological samples. As a result, ULF LC-FAIMS-MS brought unprecedented sensitivity levels and high reproducibility in bottom-up proteomic profiling. In addition, FAIMS improved the dynamic range, signal-to-noise ratios, and detection limits in ULF LC-MS-based measurements by significantly reducing chemical noise in comparison to the conventional nanoESI interface used with the same ULF LC-MS setup. Two, three, or four compensation voltages separated by at least 15 V were tested within a single LC-MS run using the FAIMS interface. The optimized ULF LC-ESI-FAIMS-MS/MS conditions resulted in identification of 2,348 ± 42 protein groups, 10,062 ± 285 peptide groups, and 15,734 ± 350 peptide-spectrum matches for 1 ng of a HeLa digest, using a 1 h gradient at the flow rate of 12 nL/min, which represents an increase by 38%, 91%, and 131% in respective identifications, as compared to the control experiment (without FAIMS). To evaluate the practical utility of the ULF LC-ESI-FAIMS-MS platform in proteomic profiling of limited samples, approximately 100, 1,000, and 10,000 U937 myeloid leukemia cells were processed, and a one-tenth of each sample was analyzed. Using the optimized conditions, we were able to reliably identify 251 ± 54, 1,135 ± 80, and 2,234 ± 25 protein groups from injected aliquots corresponding to ∼10, 100, and 1,000 processed cells.


Asunto(s)
Cromatografía Liquida/métodos , Límite de Detección , Espectrometría de Masas/métodos , Proteómica/métodos , Células HeLa , Humanos , Nanotecnología , Factores de Tiempo
17.
Nat Chem Biol ; 14(3): 206-214, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29443976

RESUMEN

Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.


Asunto(s)
Genoma Humano , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteoma/química , Proteómica/métodos , Bases de Datos de Proteínas , Humanos , Espectrometría de Masas , Fenotipo , Biosíntesis de Proteínas , Isoformas de Proteínas/química , Ubiquitina/química
18.
Anal Chem ; 91(6): 3810-3817, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30839199

RESUMEN

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) provides a unique in situ chemical profile that can include drugs, nucleic acids, metabolites, lipids, and proteins. MSI of individual cells (of a known cell type) affords a unique insight into normal and disease-related processes and is a prerequisite for combining the results of MSI and other single-cell modalities (e.g. mass cytometry and next-generation sequencing). Technological barriers have prevented the high-throughput assignment of MSI spectra from solid tissue preparations to their cell type. These barriers include obtaining a suitable cell-identifying image (e.g. immunohistochemistry) and obtaining sufficiently accurate registration of the cell-identifying and MALDI-MS images. This study introduces a technique that overcame these barriers by assigning cell type directly from mass spectra. We hypothesized that, in MSI from mice with a defined fluorescent protein expression pattern, the fluorescent protein's molecular ion could be used to identify cell cohorts. A method was developed for the purification of enhanced yellow fluorescent protein (EYFP) from mice. To determine EYFP's molecular mass for MSI studies, we performed intact mass analysis and characterized the protein's primary structure and post-translational modifications through various techniques. MALDI-MSI methods were developed to enhance the detection of EYFP in situ, and by extraction of EYFP's molecular ion from MALDI-MS images, automated, whole-image assignment of cell cohorts was achieved. This method was validated using a well-characterized mouse line that expresses EYFP in motor and sensory neurons and should be applicable to hundreds of commercially available mice (and other animal) strains comprising a multitude of cell-specific fluorescent labels.


Asunto(s)
Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Ratones , Peso Molecular , Neuronas/metabolismo
19.
Electrophoresis ; 39(16): 2069-2082, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29749064

RESUMEN

High-resolution capillary zone electrophoresis - mass spectrometry (CZE-MS) has been of increasing interest for the analysis of biopharmaceuticals. In this work, a combination of middle-down and intact CZE-MS analyses has been implemented for the characterization of a biotherapeutic monoclonal antibody (mAb) with a variety of post-translational modifications (PTMs) and glycosylation structures. Middle-down and intact CZE separations were performed in an acidified methanol-water background electrolyte on a capillary with a positively charged coating (M7C4I) coupled to an Orbitrap mass spectrometer using a commercial sheathless interface (CESI). Middle-down analysis of the IdeS-digested mAb provided characterization of PTMs of digestion fragments. High resolution CZE enabled separation of charge variants corresponding to 2X-deamidated, 1X-deamidated, and non-deamidated forms at baseline resolution. In the course of the middle-down CZE-MS analysis, separation of glycoforms of the FC /2 fragment was accomplished due to hydrodynamic volume differences. Several identified PTMs were confirmed by CZE-MS2 . Incorporation of TCEP-HCl reducing agent in the sample solvent resulted in successful analysis of reduced forms without the need for alkylation. CZE-MS studies on the intact mAb under denaturing conditions enabled baseline separation of the 2X-glycosylated, 1X-glycosylated, and aglycosylated populations as a result of hydrodynamic volume differences. The presence of a trace quantity of dissociated light chain was also detected in the intact protein analysis. Characterization of the mAb under native conditions verified identifications achieved via intact analysis and allowed for quantitative confirmation of proteoforms. Analysis of mAbs using CZE-MS represents a complementary approach to the more conventional liquid-chromatography - mass spectrometry-based approaches.


Asunto(s)
Anticuerpos Monoclonales/análisis , Electroforesis Capilar/métodos , Glicosilación , Espectrometría de Masas
20.
Proc Natl Acad Sci U S A ; 112(7): 2151-6, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646416

RESUMEN

Vaccines eliciting immunity against influenza A viruses (IAVs) are currently antibody-based with hemagglutinin-directed antibody titer the only universally accepted immune correlate of protection. To investigate the disconnection between observed CD8 T-cell responses and immunity to IAV, we used a Poisson liquid chromatography data-independent acquisition MS method to physically detect PR8/34 (H1N1), X31 (H3N2), and Victoria/75 (H3N2) epitopes bound to HLA-A*02:01 on human epithelial cells following in vitro infection. Among 32 PR8 peptides (8-10mers) with predicted IC50 < 60 nM, 9 were present, whereas 23 were absent. At 18 h postinfection, epitope copies per cell varied from a low of 0.5 for M13-11 to a high of >500 for M1(58-66) with PA, HA, PB1, PB2, and NA epitopes also detected. However, aside from M1(58-66), natural CD8 memory responses against conserved presented epitopes were either absent or only weakly observed by blood Elispot. Moreover, the functional avidities of the immunodominant M1(58-66)/HLA-A*02:01-specific T cells were so poor as to be unable to effectively recognize infected human epithelium. Analysis of T-cell responses to primary PR8 infection in HLA-A*02:01 transgenic B6 mice underscores the poor avidity of T cells recognizing M1(58-66). By maintaining high levels of surface expression of this epitope on epithelial and dendritic cells, the virus exploits the combination of immunodominance and functional inadequacy to evade HLA-A*02:01-restricted T-cell immunity. A rational approach to CD8 vaccines must characterize processing and presentation of pathogen-derived epitopes as well as resultant immune responses. Correspondingly, vaccines may be directed against "stealth" epitopes, overriding viral chicanery.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos/análisis , Virus de la Influenza A/inmunología , Pulmón/virología , Cromatografía Liquida , Células Epiteliales/inmunología , Células Epiteliales/virología , Epítopos/inmunología , Humanos , Pulmón/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA