Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Semin Cell Dev Biol ; 111: 52-59, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32540123

RESUMEN

Over the last decade, scientists have begun to model CNS development, function, and disease in vitro using human pluripotent stem cell (hPSC)-derived organoids. Using traditional protocols, these 3D tissues are generated by combining the innate emergent properties of differentiating hPSC aggregates with a bioreactor environment that induces interstitial transport of oxygen and nutrients and an optional supportive hydrogel extracellular matrix (ECM). During extended culture, the hPSC-derived neural organoids (hNOs) obtain millimeter scale sizes with internal microscale cytoarchitectures, cellular phenotypes, and neuronal circuit behaviors mimetic of those observed in the developing brain, eye, or spinal cord. Early studies evaluated the cytoarchitectural and phenotypical character of these organoids and provided unprecedented insight into the morphogenetic processes that govern CNS development. Comparisons to human fetal tissues revealed their significant similarities and differences. While hNOs have current disease modeling applications and significant future promise, their value as anatomical and physiological models is limited because they fail to form reproducibly and recapitulate more mature in vivo features. These include biomimetic macroscale tissue morphology, positioning of morphogen signaling centers to orchestrate appropriate spatial organization and intra- and inter-connectivity of discrete tissue regions, maturation of physiologically relevant neural circuits, and formation of vascular networks that can support sustained in vitro tissue growth. To address these inadequacies scientists have begun to integrate organoid culture with bioengineering techniques and methodologies including genome editing, biomaterials, and microfabricated and microfluidic platforms that enable spatiotemporal control of cellular differentiation or the biochemical and biophysical cues that orchestrate organoid morphogenesis. This review will examine recent advances in hNO technologies and culture strategies that promote reproducible in vitro morphogenesis and greater biomimicry in structure and function.


Asunto(s)
Encéfalo/citología , Morfogénesis/fisiología , Células-Madre Neurales/citología , Neuronas/citología , Organoides/citología , Células Madre Pluripotentes/citología , Bioingeniería/métodos , Encéfalo/fisiología , Diferenciación Celular , Células Endoteliales/citología , Células Endoteliales/fisiología , Matriz Extracelular/metabolismo , Humanos , Modelos Biológicos , Neovascularización Fisiológica , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Neurogénesis/fisiología , Neuroglía/citología , Neuroglía/fisiología , Neuronas/fisiología , Neuronas/trasplante , Organoides/fisiología , Células Madre Pluripotentes/fisiología , Ingeniería de Tejidos/métodos
2.
Biotechnol Bioeng ; 114(2): 245-259, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27531038

RESUMEN

The complex pathology of spinal cord injury (SCI), involving a cascade of secondary events and the formation of inhibitory barriers, hampers regeneration across the lesion site and often results in irreversible loss of motor function. The limited regenerative capacity of endogenous cells after SCI has led to a focus on the development of cell therapies that can confer both neuroprotective and neuroregenerative benefits. Stem cells have emerged as a candidate cell source because of their ability to self-renew and differentiate into a multitude of specialized cell types. While ethical and safety concerns impeded the use of stem cells in the past, advances in isolation and differentiation methods have largely mitigated these issues. A confluence of work in stem cell biology, genetics, and developmental neurobiology has informed the directed differentiation of specific spinal cell types. After transplantation, these stem cell-derived populations can replace lost cells, provide trophic support, remyelinate surviving axons, and form relay circuits that contribute to functional recovery. Further refinement of stem cell differentiation and transplantation methods, including combinatorial strategies that involve biomaterial scaffolds and drug delivery, is critical as stem cell-based treatments enter clinical trials. Biotechnol. Bioeng. 2017;114: 245-259. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Neurogénesis , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre , Animales , Humanos , Ratones , Regeneración Nerviosa , Ingeniería de Tejidos , Andamios del Tejido
3.
bioRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38798648

RESUMEN

Neural organoids have revolutionized how human neurodevelopmental disorders (NDDs) are studied. Yet, their utility for screening complex NDD etiologies and in drug discovery is limited by a lack of scalable and quantifiable derivation formats. Here, we describe the RosetteArray® platform's ability to be used as an off-the-shelf, 96-well plate assay that standardizes incipient forebrain and spinal cord organoid morphogenesis as micropatterned, 3-D, singularly polarized neural rosette tissues (>9000 per plate). RosetteArrays are seeded from cryopreserved human pluripotent stem cells, cultured over 6-8 days, and immunostained images can be quantified using artificial intelligence-based software. We demonstrate the platform's suitability for screening developmental neurotoxicity and genetic and environmental factors known to cause neural tube defect risk. Given the presence of rosette morphogenesis perturbation in neural organoid models of NDDs and neurodegenerative disorders, the RosetteArray platform could enable quantitative high-throughput screening (qHTS) of human neurodevelopmental risk across regulatory and precision medicine applications.

4.
ACS Appl Mater Interfaces ; 15(31): 37157-37173, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37494582

RESUMEN

Advances within in vitro biological system complexity have enabled new possibilities for the "Organs-on-a-Chip" field. Microphysiological systems (MPS) as such incorporate sophisticated biological constructs with custom biological sensors. For microelectromechanical systems (MEMS) sensors, the dielectric layer is critical for device performance, where silicon dioxide (SiO2) represents an excellent candidate due to its biocompatibility and wide utility in MEMS devices. Yet, high temperatures traditionally preclude SiO2 from incorporation in polymer-based BioMEMS. Electron-beam deposition of SiO2 may provide a low-temperature, dielectric serving as a nanoporous MPS growth substrate. Herein, we enable improved adherence of nanoporous SiO2 to polycarbonate (PC) and 316L stainless steel (SS) via polydopamine (PDA)-mediated chemistry. The resulting stability of the combinatorial PDA-SiO2 film was interrogated, along with the nature of the intrafilm interactions. A custom polymer-metal three-dimensional (3D) microelectrode array (3D MEA) is then reported utilizing PDA-SiO2 insulation, for definition of novel dorsal root ganglion (DRG)/nociceptor and dorsal horn (DH) 3D neural constructs in excess of 6 months for the first time. Spontaneous/evoked compound action potentials (CAPs) are successfully reported. Finally, inhibitory drugs treatments showcase pharmacological responsiveness of the reported multipart biological activity. These results represent the initiation of a novel 3D MEA-integrated, 3D neural MPS for the long-term electrophysiological study.


Asunto(s)
Polímeros , Dióxido de Silicio , Humanos , Microelectrodos , Polímeros/farmacología , Indoles/farmacología
5.
Front Cell Dev Biol ; 10: 942742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092702

RESUMEN

Three dimensional, self-assembled organoids that recapitulate key developmental and organizational events during embryogenesis have proven transformative for the study of human central nervous system (CNS) development, evolution, and disease pathology. Brain organoids have predominated the field, but human pluripotent stem cell (hPSC)-derived models of the spinal cord are on the rise. This has required piecing together the complex interactions between rostrocaudal patterning, which specifies axial diversity, and dorsoventral patterning, which establishes locomotor and somatosensory phenotypes. Here, we review how recent insights into neurodevelopmental biology have driven advancements in spinal organoid research, generating experimental models that have the potential to deepen our understanding of neural circuit development, central pattern generation (CPG), and neurodegenerative disease along the body axis. In addition, we discuss the application of bioengineering strategies to drive spinal tissue morphogenesis in vitro, current limitations, and future perspectives on these emerging model systems.

6.
Sci Adv ; 8(39): eabn7430, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36179024

RESUMEN

Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete HOX profiles are converted to pCNS progenitors (pCNSPs). Then, by tuning D/V signaling, pCNSPs are directed to locomotor or somatosensory neurons. Expansive single-cell RNA-sequencing (scRNA-seq) analysis coupled with a novel computational pipeline allowed us to detect hundreds of transcriptional markers within region-specific phenotypes, enabling discovery of gene expression patterns across R/C and D/V developmental axes. These findings highlight the potential of these resources to advance a mechanistic understanding of pCNS development, enhance in vitro models, and inform therapeutic strategies.


Asunto(s)
Neuronas , Transcriptoma , Diferenciación Celular/genética , Sistema Nervioso Central , Humanos , Neuronas/fisiología , ARN
7.
Front Cell Neurosci ; 15: 684792, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408627

RESUMEN

The spinal cord contains a diverse array of sensory and motor circuits that are essential for normal function. Spinal cord injury (SCI) permanently disrupts neural circuits through initial mechanical damage, as well as a cascade of secondary injury events that further expand the spinal cord lesion, resulting in permanent paralysis. Tissue clearing and 3D imaging have recently emerged as promising techniques to improve our understanding of the complex neural circuitry of the spinal cord and the changes that result from damage due to SCI. However, the application of this technology for studying the intact and injured spinal cord remains limited. Here, we optimized the passive CLARITY technique (PACT) to obtain gentle and efficient clearing of the murine spinal cord without the need for specialized equipment. We demonstrate that PACT clearing enables 3D imaging of multiple fluorescent labels in the spinal cord to assess molecularly defined neuronal populations, acute inflammation, long-term tissue damage, and cell transplantation. Collectively, these procedures provide a framework for expanding the utility of tissue clearing to enhance the study of spinal cord neural circuits, as well as cellular- and tissue-level changes that occur following SCI.

8.
Nat Protoc ; 15(1): 181, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31705126

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nat Protoc ; 14(11): 3033-3058, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31628445

RESUMEN

V2a interneurons are located in the hindbrain and spinal cord, where they provide rhythmic input to major motor control centers. Many of the phenotypic properties and functions of excitatory V2a interneurons have yet to be fully defined. Definition of these properties could lead to novel regenerative therapies for traumatic injuries and drug targets for chronic degenerative diseases. Here we describe how to produce V2a interneurons from mouse and human pluripotent stem cells (PSCs), as well as strategies to characterize and mature the cells for further analysis. The described protocols are based on a sequence of small-molecule treatments that induce differentiation of PSCs into V2a interneurons. We also include a detailed description of how to phenotypically characterize, mature, and freeze the cells. The mouse and human protocols are similar in regard to the sequence of small molecules used but differ slightly in the concentrations and durations necessary for induction. With the protocols described, scientists can expect to obtain V2a interneurons with purities of ~75% (mouse) in 7 d and ~50% (human) in 20 d.


Asunto(s)
Interneuronas/citología , Neurogénesis , Células Madre Pluripotentes/citología , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Humanos , Ratones
10.
Cell Syst ; 9(2): 167-186.e12, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31302154

RESUMEN

Neuroepithelial stem cells (NSC) from different anatomical regions of the embryonic neural tube's rostrocaudal axis can differentiate into diverse central nervous system tissues, but the transcriptional regulatory networks governing these processes are incompletely understood. Here, we measure region-specific NSC gene expression along the rostrocaudal axis in a human pluripotent stem cell model of early central nervous system development over a 72-h time course, spanning the hindbrain to cervical spinal cord. We introduce Escarole, a probabilistic clustering algorithm for non-stationary time series, and combine it with prior-based regulatory network inference to identify genes that are regulated dynamically and predict their upstream regulators. We identify known regulators of patterning and neural development, including the HOX genes, and predict a direct regulatory connection between the transcription factor POU3F2 and target gene STMN2. We demonstrate that POU3F2 is required for expression of STMN2, suggesting that this regulatory connection is important for region specificity of NSCs.


Asunto(s)
Células-Madre Neurales/metabolismo , Rombencéfalo/embriología , Médula Espinal/embriología , Diferenciación Celular/genética , Línea Celular , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células-Madre Neurales/fisiología , Células Neuroepiteliales , Neurogénesis , Neuronas/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Estatmina/genética , Estatmina/metabolismo , Transcriptoma/genética
11.
Elife ; 82019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31084710

RESUMEN

Two-dimensional (2D) human skeletal muscle fiber cultures are ill-equipped to support the contractile properties of maturing muscle fibers. This limits their application to the study of adult human neuromuscular junction (NMJ) development, a process requiring maturation of muscle fibers in the presence of motor neuron endplates. Here we describe a three-dimensional (3D) co-culture method whereby human muscle progenitors mixed with human pluripotent stem cell-derived motor neurons self-organize to form functional NMJ connections. Functional connectivity between motor neuron endplates and muscle fibers is confirmed with calcium imaging and electrophysiological recordings. Notably, we only observed epsilon acetylcholine receptor subunit protein upregulation and activity in 3D co-cultures. Further, 3D co-culture treatments with myasthenia gravis patient sera shows the ease of studying human disease with the system. Hence, this work offers a simple method to model and evaluate adult human NMJ de novo development or disease in culture.


Asunto(s)
Técnicas de Cocultivo/métodos , Músculo Esquelético/fisiología , Unión Neuromuscular/fisiología , Técnicas de Cultivo de Órganos/métodos , Humanos , Neuronas Motoras/fisiología , Células Musculares/fisiología
12.
J Neurosci Methods ; 298: 16-23, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29408391

RESUMEN

BACKGROUND: Transplantation of human pluripotent stem cell (hPSC)-derived neurons into chick embryos is an established preliminary assay to evaluate engraftment potential. Yet, with recent advances in deriving diverse human neuronal subtypes, optimizing and standardizing such transplantation methodology for specific subtypes at their correlated anatomical sites is still required. NEW METHOD: We determined the optimal stage of hPSC-derived motor neuron (hMN) differentiation for ex ovo transplantation, and developed a single injection protocol that implants hMNs throughout the spinal cord enabling broad regional engraftment possibilities. RESULTS: A single injection into the neural tube lumen yielded a 100% chick embryo survival and successful transplantation rate with MN engraftment observed from the rostral cervical through caudal lumbar spinal cord. Transplantation of HB9+/ChAT- hMN precursors yielded the greatest amount of engraftment compared to Pax6+/Nkx6.1+/Olig2+ progenitors or mature HB9+/ChAT+ hMNs. COMPARISON WITH EXISTING METHOD(S): Our single injection hMN transplant method is the first to standardize the optimal hMN phenotype for chick embryo transplantation, provide a rubric for engraftment quantification, and enable broad engraftment throughout the spinal cord with a single surgical intervention. CONCLUSION: Transplantation of HB9+/ChAT- hMN precursors into chick embryos of Hamburger Hamilton (HH) stages 15-18 using a single luminal injection confers a high probability of embryo survival and cell engraftment in diverse regions throughout the spinal cord.


Asunto(s)
Neuronas Motoras/fisiología , Neuronas Motoras/trasplante , Tubo Neural/fisiología , Tubo Neural/cirugía , Células Madre Pluripotentes/fisiología , Células Madre Pluripotentes/trasplante , Animales , Línea Celular , Embrión de Pollo , Humanos , Modelos Animales , Neuronas Motoras/citología , Tubo Neural/citología , Neurogénesis , Células Madre Pluripotentes/citología , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/fisiología , Trasplante Heterólogo/métodos
13.
Elife ; 72018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30371350

RESUMEN

Human pluripotent stem cell (hPSC)-derived neural organoids display unprecedented emergent properties. Yet in contrast to the singular neuroepithelial tube from which the entire central nervous system (CNS) develops in vivo, current organoid protocols yield tissues with multiple neuroepithelial units, a.k.a. neural rosettes, each acting as independent morphogenesis centers and thereby confounding coordinated, reproducible tissue development. Here, we discover that controlling initial tissue morphology can effectively (>80%) induce single neural rosette emergence within hPSC-derived forebrain and spinal tissues. Notably, the optimal tissue morphology for observing singular rosette emergence was distinct for forebrain versus spinal tissues due to previously unknown differences in ROCK-mediated cell contractility. Following release of geometric confinement, the tissues displayed radial outgrowth with maintenance of a singular neuroepithelium and peripheral neuronal differentiation. Thus, we have identified neural tissue morphology as a critical biophysical parameter for controlling in vitro neural tissue morphogenesis furthering advancement towards biomanufacture of CNS tissues with biomimetic anatomy and physiology.


Asunto(s)
Diferenciación Celular , Técnicas de Cultivo de Órganos/métodos , Células Madre Pluripotentes/fisiología , Prosencéfalo/citología , Médula Espinal/citología , Fenómenos Biofísicos , Humanos , Morfogénesis
14.
J Neurotrauma ; 35(24): 2883-2903, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29873284

RESUMEN

There is growing interest in the use of neural precursor cells to treat spinal cord injury (SCI). Despite extensive pre-clinical research, it remains unclear as to which donor neuron phenotypes are available for transplantation, whether the same populations exist across different sources of donor tissue (e.g., developing tissue vs. cultured cells), and whether donor cells retain their phenotype once transplanted into the hostile internal milieu of the injured adult spinal cord. In addition, while functional improvements have been reported after neural precursor transplantation post-SCI, the extent of recovery is limited and variable. The present work begins to address these issues by harnessing ventrally derived excitatory pre-motor V2a spinal interneurons (SpINs) to repair the phrenic motor circuit after cervical SCI. Recent studies have demonstrated that Chx10-positive V2a SpINs contribute to anatomical plasticity within the phrenic circuitry after cervical SCI, thus identifying them as a therapeutic candidate. Building upon this discovery, the present work tests the hypothesis that transplantation of neural progenitor cells (NPCs) enriched with V2a INs can contribute to neural networks that promote repair and enhance respiratory plasticity after cervical SCI. Cultured NPCs (neuronal and glial restricted progenitor cells) isolated from E13.5 Green fluorescent protein rats were aggregated with TdTomato-mouse embryonic stem cell-derived V2a INs in vitro, then transplanted into the injured cervical (C3-4) spinal cord. Donor cells survive, differentiate and integrate with the host spinal cord. Functional diaphragm electromyography indicated recovery 1 month following treatment in transplant recipients. Animals that received donor cells enriched with V2a INs showed significantly greater functional improvement than animals that received NPCs alone. The results from this study offer insight into the neuronal phenotypes that might be effective for (re)establishing neuronal circuits in the injured adult central nervous system.


Asunto(s)
Interneuronas/trasplante , Células-Madre Neurales/trasplante , Recuperación de la Función , Traumatismos de la Médula Espinal , Trasplante de Células Madre/métodos , Animales , Femenino , Ratas , Ratas Sprague-Dawley
15.
Stem Cells Dev ; 26(22): 1597-1611, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28851266

RESUMEN

Central nervous system injury often leads to functional impairment due, in part, to the formation of an inhibitory glial scar following injury that contributes to poor regeneration. Astrocytes are the major cellular components of the glial scar, which has led to the belief that they are primarily inhibitory following injury. Recent work has challenged this by demonstrating that some astrocytes are required for spinal cord regeneration and astrocytic roles in recovery depend on their phenotype. In this work, two mixed populations containing primarily either fibrous or protoplasmic astrocytes were derived from mouse embryonic stem cells (mESCs). Motoneuron and V2a interneuron growth on live cultures, freeze-lysed cultures, or decellularized extracellular matrix (ECM) from astrocytes were assessed. Both neuronal populations were found to extend significantly longer neurites on protoplasmic-derived substrates than fibrous-derived substrates. Interestingly, neurons extended longer neurites on protoplasmic-derived ECM than fibrous-derived ECM. ECM proteins were compared with in vivo astrocyte expression profiles, and it was found that the ESC-derived ECMs were enriched for astrocyte-specific proteins. Further characterization revealed that protoplasmic ECM had significantly higher levels of axon growth promoting proteins, while fibrous ECM had significantly higher levels of proteins that inhibit axon growth. Supporting this observation, knockdown of spondin-1 improved neurite growth on fibrous ECM, while laminin α5 and γ1 knockdown decreased neurite growth on protoplasmic ECM. These methods allow for scalable production of specific astrocyte subtype-containing populations with different neuronal growth support capacities, and can be used for further studies of the functional importance of astrocyte heterogeneity.


Asunto(s)
Astrocitos/citología , Células Madre Embrionarias/citología , Regeneración Nerviosa/fisiología , Neuronas/citología , Animales , Matriz Extracelular/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Neuritas/fisiología , Neurogénesis/fisiología , Neuroglía/citología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia
16.
Exp Neurol ; 277: 305-316, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26784005

RESUMEN

Challenges in parsing specific contributions to spinal microcircuit architecture have limited our ability to model and manipulate those networks for improved functional regeneration after injury or disease. While spinal interneurons (INs) have been implicated in driving coordinated locomotor behaviors, they constitute only a small percentage of the spinal cord and are difficult to isolate from primary tissue. In this study, we employed a genetic strategy to obtain large quantities of highly enriched mouse embryonic stem cell (ESC)-derived V2a INs, an excitatory glutamatergic IN population that is defined by expression of the homeodomain protein Chx10 during development. Puromycin N-acetyltransferase expression was driven by the native gene regulatory elements of Chx10 in the transgenic ESC line, resulting in positive selection of V2a INs after induction and treatment with puromycin. Directly after selection, approximately 80% of cells are Chx10(+), with 94% Lhx3(+); after several weeks, cultures remain free of proliferative cell types and mature into normal glutamatergic neurons as assessed by molecular markers and electrophysiological methods. Functional synapses were observed between selected ESC-derived V2a INs and motor neurons when co-cultured, demonstrating the potential of these cells to form neural networks. While ESC-derived neurons obtained in vitro are not identical to those that develop in the spinal cord, the transgenic ESCs here provide a unique tool to begin studying V2a INs in isolation or for use in in vitro models of spinal microcircuits.


Asunto(s)
Células Madre Embrionarias/fisiología , Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Factores de Transcripción/metabolismo , Acetiltransferasas/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Diferenciación Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Puromicina/farmacología , Factores de Transcripción/genética
17.
Acta Biomater ; 28: 23-32, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26384702

RESUMEN

Regeneration of lost synaptic connections following spinal cord injury (SCI) is limited by local ischemia, cell death, and an excitotoxic environment, which leads to the development of an inhibitory glial scar surrounding a cystic cavity. While a variety of single therapy interventions provide incremental improvements to functional recovery after SCI, they are limited; a multifactorial approach that combines several single therapies may provide a better chance of overcoming the multitude of obstacles to recovery. To this end, fibrin scaffolds were modified to provide sustained delivery of neurotrophic factors and anti-inhibitory molecules, as well as encapsulation of embryonic stem cell-derived progenitor motor neurons (pMNs). In vitro characterization of this combination scaffold confirmed that pMN viability was unaffected by culture alongside sustained delivery systems. When transplanted into a rat sub-acute SCI model, fibrin scaffolds containing growth factors (GFs), anti-inhibitory molecules without pMNs, or pMNs with GFs had lower chondroitin sulfate proteoglycan levels compared to scaffolds containing anti-inhibitory molecules with pMNs. Scaffolds containing pMNs, but not anti-inhibitory molecules, showed survival, differentiation into neuronal cell types, axonal extension in the transplant area, and the ability to integrate into host tissue. However, the combination of pMNs with sustained-delivery of anti-inhibitory molecules led to reduced cell survival and increased macrophage infiltration. While combination therapies retain potential for effective treatment of SCI, further work is needed to improve cell survival and to limit inflammation. STATEMENT OF SIGNIFICANCE: Spinal cord injury (SCI) creates a highly complex inhibitory environment with a multitude of obstacles that limit recovery. Many therapeutic options have been developed to overcome single obstacles, but single therapies typically only lead to limited functional improvement. Therefore combination therapies may improve recovery by targeting several inhibitory obstacles simultaneously. The present study used biomaterial scaffolds to combine the sustained release of anti-inhibitory molecules and growth factors with cell transplantation of highly purified progenitor motor neurons. This expands upon previously established biomaterial scaffolds by supporting surviving cells, limiting inhibition from the extracellular environment, and replenishing lost cell populations. We show that while promising, certain combinations may exacerbate negative side-effects instead of augmenting positive features.


Asunto(s)
Células Madre Embrionarias/citología , Células-Madre Neurales/citología , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre , Animales , Diferenciación Celular , Terapia Combinada , Sistemas de Liberación de Medicamentos , Ratas , Andamios del Tejido
18.
Stem Cell Res Ther ; 6: 220, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26555777

RESUMEN

INTRODUCTION: Spinal V3 interneurons (INs) are a commissural, glutamatergic, propriospinal neuron population that holds great potential for understanding locomotion circuitry and local rewiring after spinal cord injury. Embryonic stem cells hold promise as a cell source. However, the inevitable heterogeneity resulting from differentiation protocols makes studying post-mitotic stem cell-derived neuron populations difficult because proliferative glia quickly overtake a culture. Previously, an induction protocol for V3 INs was established. However, because of the heterogeneous population resulting from the induction protocol, functional characterization of the induced cells was not possible. METHODS: A selectable murine transgenic embryonic stem cell (ESC) line (Sim1-Puro) was generated by recombineering. The expression of the puromycin resistance enzyme, puromycin N-acetyl-transferase (PAC), was knocked into the locus of a post-mitotic V3 IN marker (Sim1), allowing Sim1 gene regulatory elements to control PAC expression. The resulting cell line was characterized for Sim1 expression by in situ hybridization, for glutamatergic marker expression by immunocytochemistry and quantitative real time polymerase chain reaction (qRT-PCR), and for functional maturation by electrophysiology. RESULTS: Puromycin selection significantly enriched the population for V3 INs, allowing long-term characterization. The selected population expressed the neuronal marker ß-III tubulin and the glutamatergic neuron marker VGluT2. The selected V3 INs also exhibited appropriate functional maturation, as assessed by electrophysiology, and remained glutamatergic for 2 weeks. CONCLUSION: The Sim1-Puro cell line provides a simple, high throughput method for generating large numbers of V3 INs from mouse ESCs for future in vitro and cell transplantation studies.


Asunto(s)
Línea Celular , Células Madre Embrionarias/citología , Interneuronas/citología , Puromicina/farmacología , Acetiltransferasas/genética , Antígenos de Diferenciación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular/efectos de los fármacos , Línea Celular/metabolismo , Medios de Cultivo , Medios de Cultivo Condicionados , Técnicas de Sustitución del Gen , Mutagénesis Insercional , Proteínas Represoras/genética
19.
Tissue Eng Part A ; 21(23-24): 2852-64, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26466815

RESUMEN

The use of growth factors, such as glial cell line-derived neurotrophic factor (GDNF), for the treatment of peripheral nerve injury has been useful in promoting axon survival and regeneration. Unfortunately, finding a method that delivers the appropriate spatial and temporal release profile to promote functional recovery has proven difficult. Some release methods result in burst release profiles too short to remain effective over the regeneration period; however, prolonged exposure to GDNF can result in axonal entrapment at the site of release. Thus, GDNF was delivered in both a spatially and temporally controlled manner using a two-phase system comprised of an affinity-based release system and conditional lentiviral GDNF overexpression from Schwann cells (SCs). Briefly, SCs were transduced with a tetracycline-inducible (Tet-On) GDNF overexpressing lentivirus before transplantation. Three-centimeter acellular nerve allografts (ANAs) were modified by injection of a GDNF-releasing fibrin scaffold under the epineurium and then used to bridge a 3 cm sciatic nerve defect. To encourage growth past the ANA, GDNF-SCs were transplanted into the distal nerve and doxycycline was administered for 4, 6, or 8 weeks to determine the optimal duration of GDNF expression in the distal nerve. Live imaging and histomorphometric analysis determined that 6 weeks of doxycycline treatment resulted in enhanced regeneration compared to 4 or 8 weeks. This enhanced regeneration resulted in increased gastrocnemius and tibialis anterior muscle mass for animals receiving doxycycline for 6 weeks. The results of this study demonstrate that strategies providing spatial and temporal control of delivery can improve axonal regeneration and functional muscle reinnervation.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Lentivirus , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/terapia , Células de Schwann , Transducción Genética , Animales , Modelos Animales de Enfermedad , Masculino , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Ratas , Ratas Sprague-Dawley , Células de Schwann/metabolismo , Células de Schwann/patología , Células de Schwann/trasplante
20.
Hand (N Y) ; 10(3): 396-402, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26330769

RESUMEN

BACKGROUND: Individual contributions of exogenous Schwann cells (SCs) and vascular endothelial growth factor (VEGF) were evaluated in acellular nerve allografts (ANAs). ANA processing removes SCs and vasculature, likely contributing to reduced regeneration compared to autografts. Exogenous SCs may improve the regenerative microenvironment, and VEGF has been shown to stimulate angiogenesis. Replacing these components in ANAs may improve regeneration. METHODS: A rat sciatic nerve transection model was used to study 20-mm grafts. Four graft types were studied: (1) isograft, (2) ANA, (3) ANA-SCs, and (4) ANA-VEGF. After 10 weeks in vivo, the midgraft and distal nerve to the grafts were analyzed for axonal regeneration using histomorphometry to assess total myelinated axon counts, density, width, and percent neural tissue. RESULTS: The most axons in the distal nerve were regenerated in the isograft followed by the ANA- SC group, with 9171 ± 1822 and 7103 ± 1576 regenerated axons respectively. Both the ANA and ANA-VEGF groups had significantly fewer regenerated axons compared to the isograft (p < 0.05) with 5225 ± 2994 and 5709 ± 2657 regenerated axons, respectively. The ANA and ANA-VEGF groups also had significantly reduced fiber density and percent nerve compared to the isograft; the isograft and ANA-SC groups were not significantly different (p < 0.05). CONCLUSIONS: These results show that SCs improve axonal regeneration in a 20 mm ANA to a greater extent than VEGF. VEGF treatment showed a trend toward increased axonal regeneration but was not significantly different compared to the untreated ANA. The role of VEGF may be clearer in longer grafts where ischemia is a greater factor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA