RESUMEN
Long term benefits following short-term administration of high psychedelic doses of serotonergic and dissociative hallucinogens, typified by psilocybin and ketamine respectively, support their potential as treatments for psychiatric conditions such as major depressive disorder. The high psychedelic doses induce perceptual experiences which are associated with therapeutic benefit. There have also been anecdotal reports of these drugs being used at what are colloquially referred to as "micro" doses to improve mood and cognitive function, although currently there are recognized limitations to their clinical and preclinical investigation. In the present studies we have defined a low dose and plasma exposure range in rats for both ketamine (0.3-3 mg/kg [10-73 ng/ml]) and psilocybin/psilocin (0.05-0.1 mg/kg [7-12 ng/ml]), based on studies which identified these as sub-threshold for the induction of behavioral stereotypies. Tests of efficacy were focused on depression-related endophenotypes of anhedonia, amotivation and cognitive dysfunction using low performing male Long Evans rats trained in two food motivated tasks: a progressive ratio (PR) and serial 5-choice (5-CSRT) task. Both acute doses of ketamine (1-3 mg/kg IP) and psilocybin (0.05-0.1 mg/kg SC) pretreatment increased break point for food (PR task), and improved attentional accuracy and a measure of impulsive action (5-CSRT task). In each case, effect size was modest and largely restricted to test subjects characterized as "low performing". Furthermore, both drugs showed a similar pattern of effect across both tests. The present studies provide a framework for the future study of ketamine and psilocybin at low doses and plasma exposures, and help to establish the use of these lower concentrations of serotonergic and dissociative hallucinogens both as a valid scientific construct, and as having a therapeutic utility.
RESUMEN
The 5-HT2C receptor agonist lorcaserin (Belviq®) has been Food and Drug Administration (FDA) approved for the treatment of obesity. The present study is a back translational investigation into the effect of 28-day lorcaserin treatment in a diet-induced obesity (DIO) model using male, Sprague-Dawley rats. An assessment of drug effect on efficacy and multiple safety endpoints including cardiac function was undertaken. Lorcaserin (1-2 mg/kg SC b.i.d.) significantly reduced percentage body weight gain compared to vehicle-treated controls (VEH: 10.6 ± 0.4%; LOR 1: 7.6 ± 1.2%; LOR 2: 5.4 ± 0.6%). Measurement of body composition using quantitative magnetic resonance (QMR) imaging indicated this change was due to the selective reduction in body fat mass. Modest effects on food intake were recorded. At the completion of the treatment phase, echocardiography revealed no evidence for valvulopathy, that is, no aortic or mitral valve regurgitation. The pharmacokinetics of the present treatment regimen was determined over a 7-day treatment period; plasma C min and C max were in the range 13-160 ng/mL (1 mg/kg b.i.d.) and 34-264 ng/mL (2 mg/kg b.i.d.) with no evidence for drug accumulation. In sum, these studies show an effect of lorcaserin in the DIO model, that in the context of the primary endpoint measure of % body weight change was similar to that reported clinically (i.e., 3.0-5.2% vs. 3.2%). The present studies highlight the translational value of obesity models such as DIO, and suggest that assuming consideration is paid to nonspecific drug effects such as malaise, the DIO model has reasonable forward translational value to help predict clinical outcomes of a new chemical entity.