RESUMEN
Autoimmune hypophysitis (AH) is thought to be an autoimmune disease characterized by lymphocytic infiltration of the pituitary gland. Among AH pathologies, lymphocytic infundibulo-neurohypophysitis (LINH) involves infiltration of the neurohypophysis and/or the hypothalamic infundibulum, causing central diabetes insipidus resulting from insufficiency of arginine vasopressin secretion. The pathophysiological and pathogenetic mechanisms underlying LINH are largely unknown. Clinically, differentiating LINH from other pituitary diseases accompanied by mass lesions, including tumours, has often been difficult, because of similar clinical manifestations. We recently reported that rabphilin-3A is an autoantigen and that anti-rabphilin-3A antibodies constitute a possible diagnostic marker for LINH. However, the involvement of rabphilin-3A in the pathogenesis of LINH remains to be elucidated. This study was undertaken to explore the role of rabphilin-3A in lymphocytic neurohypophysitis and to investigate the mechanism. We found that immunization of mice with rabphilin-3A led to neurohypophysitis. Lymphocytic infiltration was observed in the neurohypophysis and supraoptic nucleus 1 month after the first immunization. Mice immunized with rabphilin-3A showed an increase in the volume of urine that was hypotonic as compared with control mice. Administration of a cocktail of monoclonal anti-rabphilin-3A antibodies did not induce neurohypophysitis. However, abatacept, which is a chimeric protein that suppresses T-cell activation, decreased the number of T cells specific for rabphilin-3A in peripheral blood mononuclear cells (PBMCs). It ameliorated lymphocytic infiltration of CD3+ T cells in the neurohypophysis of mice that had been immunized with rabphilin-3A. Additionally, there was a linear association between the number of T cells specific for rabphilin-3A in PBMCs and the number of CD3+ T cells infiltrating the neurohypophysis. In conclusion, we suggest that rabphilin-3A is a pathogenic antigen, and that T cells specific for rabphilin-3A are involved in the pathogenesis of neurohypophysitis in mice. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Hipofisitis Autoinmune/inducido químicamente , Autoinmunidad , Proteínas del Tejido Nervioso , Neurohipófisis/metabolismo , Proteínas de Transporte Vesicular , Abatacept/administración & dosificación , Animales , Anticuerpos Monoclonales/administración & dosificación , Hipofisitis Autoinmune/inmunología , Hipofisitis Autoinmune/metabolismo , Hipofisitis Autoinmune/prevención & control , Autoinmunidad/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Inmunosupresores/administración & dosificación , Ratones , Neurohipófisis/efectos de los fármacos , Neurohipófisis/inmunología , Neurohipófisis/patología , Núcleo Supraóptico/inmunología , Núcleo Supraóptico/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Micción , Rabfilina-3ARESUMEN
Hyponatremia is the most common clinical electrolyte disorder. Once thought to be asymptomatic in response to adaptation by the brain, recent evidence suggests that chronic hyponatremia may be linked to attention deficits, gait disturbances, risk of falls, and cognitive impairments. Such neurologic defects are associated with a reduction in quality of life and may be a significant cause of mortality. However, because underlying diseases such as adrenal insufficiency, heart failure, liver cirrhosis, and cancer may also affect brain function, the contribution of hyponatremia alone to neurologic manifestations and the underlying mechanisms remain unclear. Using a syndrome of inappropriate secretion of antidiuretic hormone rat model, we show here that sustained reduction of serum sodium ion concentration induced gait disturbances; facilitated the extinction of a contextual fear memory; caused cognitive impairment in a novel object recognition test; and impaired long-term potentiation at hippocampal CA3-CA1 synapses. In vivo microdialysis revealed an elevated extracellular glutamate concentration in the hippocampus of chronically hyponatremic rats. A sustained low extracellular sodium ion concentration also decreased glutamate uptake by primary astrocyte cultures, suggesting an underlying mechanism of impaired long-term potentiation. Furthermore, gait and memory performances of corrected hyponatremic rats were equivalent to those of control rats. Thus, these results suggest chronic hyponatremia in humans may cause gait disturbance and cognitive impairment, but these abnormalities are reversible and careful correction of this condition may improve quality of life and reduce mortality.
Asunto(s)
Trastornos Neurológicos de la Marcha/etiología , Hiponatremia/complicaciones , Síndrome de Secreción Inadecuada de ADH/fisiopatología , Trastornos de la Memoria/etiología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Región CA1 Hipocampal/fisiopatología , Región CA3 Hipocampal/fisiopatología , Células Cultivadas , Enfermedad Crónica , Trastornos del Conocimiento/sangre , Trastornos del Conocimiento/etiología , Modelos Animales de Enfermedad , Miedo/fisiología , Trastornos Neurológicos de la Marcha/sangre , Ácido Glutámico/metabolismo , Hiponatremia/sangre , Hiponatremia/psicología , Síndrome de Secreción Inadecuada de ADH/complicaciones , Síndrome de Secreción Inadecuada de ADH/psicología , Masculino , Trastornos de la Memoria/sangre , Microdiálisis , Plasticidad Neuronal , Ratas , Ratas Sprague-Dawley , Sodio/sangre , Sodio/farmacología , Sinapsis/fisiologíaRESUMEN
Overly rapid correction of chronic hyponatremia can cause osmotic demyelination syndrome (ODS). Minocycline protects ODS associated with overly rapid correction of chronic hyponatremia with hypertonic saline infusion in rats. In clinical practice, inadvertent rapid correction frequently occurs due to water diuresis, when vasopressin action suddenly ceases. In addition, vasopressin receptor antagonists have been applied to treat hyponatremia. Here the susceptibility to and pathology of ODS were evaluated using rat models developed to represent rapid correction of chronic hyponatremia in the clinical setting. The protective effect of minocycline against ODS was assessed. Chronic hyponatremia was rapidly corrected by 1 (T1) or 10 mg/kg (T10) of tolvaptan, removal of desmopressin infusion pumps (RP), or administration of hypertonic saline. The severity of neurological impairment in the T1 group was significantly milder than in other groups and brain hemorrhage was found only in the T10 and desmopressin infusion removal groups. Minocycline inhibited demyelination in the T1 group. Further, immunohistochemistry showed loss of aquaporin-4 (AQP4) in astrocytes before demyelination developed. Interestingly, serum AQP4 levels were associated with neurological impairments. Thus, minocycline can prevent ODS caused by overly rapid correction of hyponatremia due to water diuresis associated with vasopressin action suppression. Increased serum AQP4 levels may be a predictive marker for ODS.
Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/toxicidad , Benzazepinas/toxicidad , Enfermedades Desmielinizantes/prevención & control , Diuresis/efectos de los fármacos , Hiponatremia/terapia , Minociclina/farmacología , Fármacos Neuroprotectores/farmacología , Solución Salina Hipertónica/toxicidad , Terapéutica/efectos adversos , Animales , Acuaporina 4/sangre , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Conducta Animal/efectos de los fármacos , Biomarcadores/sangre , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Citoprotección , Desamino Arginina Vasopresina , Enfermedades Desmielinizantes/sangre , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/psicología , Modelos Animales de Enfermedad , Hiponatremia/sangre , Hiponatremia/inducido químicamente , Hiponatremia/fisiopatología , Hemorragias Intracraneales/inducido químicamente , Hemorragias Intracraneales/prevención & control , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ósmosis , Ratas Sprague-Dawley , Solución Salina Hipertónica/administración & dosificación , Sodio/sangre , Factores de Tiempo , Tolvaptán , Equilibrio Hidroelectrolítico/efectos de los fármacosRESUMEN
Selective apoptosis of granule cells in the hippocampal dentate gyrus (DG) of rats with bilateral adrenalectomy (ADX) and in patients who died of adrenal insufficiency has been reported. Although adrenal insufficiency is a common disease and is usually associated with hyponatremia, its effect on the central nervous system and in apoptosis in the hippocampus remain to be elucidated. Using rat models to represent clinical hyponatremia accompanying adrenal insufficiency, we show that reduced serum [Na+] was associated with selective apoptosis in the DG. Nine days after ADX, apoptotic cells were observed in the DG of rats whose serum [Na+] was <125mEq/L (moderate hyponatremia), but rarely in those whose serum [Na+] was ≥125mEq/L or in normonatremic rats. Although all hyponatremic ADX rats survived following treatment with corticosterone and saline started 7days after ADX when apoptosis had not yet occurred, selective apoptosis on day 9 was not prevented in moderately hyponatremic rats. Interestingly, treatment with memantine, a noncompetitive NMDAR antagonist, prevented the selective apoptosis in the DG in moderately hyponatremic, ADX rats, and improved electrophysiological dysfunction, including impaired basal synaptic transmission and long-term potentiation at the entorhinal cortex-DG synapses. These results demonstrated that in adrenal insufficient rats, hyponatremia was associated with apoptosis in the DG, and that memantine prevented the apoptosis and improved cell function. Our data imply the importance of assessing the possibility of neurological impairments after treatment with CORT in patients with moderate or severe hyponatremia accompanying adrenal insufficiency and that memantine may represent a beneficial therapeutic strategy to prevent neurological impairments in such patients.
Asunto(s)
Insuficiencia Suprarrenal/patología , Apoptosis/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Hiponatremia/patología , Memantina/farmacología , Insuficiencia Suprarrenal/complicaciones , Adrenalectomía/efectos adversos , Animales , Proteínas de Unión al Calcio/metabolismo , Corticosterona/administración & dosificación , Giro Dentado/patología , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Esquema de Medicación , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hiponatremia/complicaciones , Masculino , Memantina/uso terapéutico , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/efectos de los fármacos , Neuropéptidos/metabolismo , Ratas , Ratas Sprague-Dawley , Cloruro de Sodio/efectos adversos , Factores de TiempoRESUMEN
Arginine vasopressin (AVP) is secreted via exocytosis; however, the precise molecular mechanism underlying the exocytosis of AVP remains to be elucidated. To better understand the mechanisms of AVP secretion, in our study we have identified proteins that bind with a 25 kDa synaptosomal-associated protein (SNAP25). SNAP25 plays a crucial role in exocytosis, in the posterior pituitary. Embryonic stem (ES) cell-derived AVP neurons were established to investigate the functions of the identified proteins. Using glutathione S-transferase (GST)-pulldown assays and proteomic analyses, we identified tomosyn-1 (syntaxin-binding protein 5) as a SNAP25-binding protein in the posterior pituitary. Coimmunoprecipitation assays indicated that tomosyn formed N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes with SNAP25 and syntaxin1. Immunohistochemistry showed that tomosyn localized to the posterior pituitary. Mouse ES cells self-differentiated into AVP neurons (mES-AVP) that expressed tomosyn and two transmembrane SNARE proteins, including SNAP25 and syntaxin1. KCl increased AVP secretion in mES-AVP, and overexpression of tomosyn-1 reduced KCl-stimulated AVP secretion. Downregulation of tomosyn-1 with siRNA increased KCl-stimulated AVP secretion. These results suggested that tomosyn-1 negatively regulated AVP secretion in mES-AVP and further suggest the possibility of using mES-AVP culture systems to evaluate the role of synaptic proteins from AVP neurons.
Asunto(s)
Arginina Vasopresina/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/citología , Proteínas R-SNARE/metabolismo , Animales , Línea Celular , Masculino , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteínas del Tejido Nervioso/análisis , Neuronas/metabolismo , Neurohipófisis/metabolismo , Neurohipófisis/ultraestructura , Unión Proteica , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/análisis , Ratas Sprague-Dawley , Proteína 25 Asociada a Sinaptosomas/metabolismoRESUMEN
CONTEXT: Central diabetes insipidus (CDI) can be caused by several diseases, but in about half of the patients the etiological diagnosis remains unknown. Lymphocytic infundibulo-neurohypophysitis (LINH) is an increasingly recognized entity among cases of idiopathic CDI; however, the differential diagnosis from other pituitary diseases including tumors can be difficult because of similar clinical and radiological manifestations. The definite diagnosis of LINH requires invasive pituitary biopsy. OBJECTIVE: The study was designed to identify the autoantigen(s) in LINH and thus develop a diagnostic test based on serum autoantibodies. DESIGN: Rat posterior pituitary lysate was immunoprecipitated with IgGs purified from the sera of patients with LINH or control subjects. The immunoprecipitates were subjected to liquid chromatography-tandem mass spectrometry to screen for pituitary autoantigens of LINH. Subsequently, we made recombinant proteins of candidate autoantigens and analyzed autoantibodies in serum by Western blotting. RESULTS: Rabphilin-3A proved to be the most diagnostically useful autoantigen. Anti-rabphilin-3A antibodies were detected in 22 of the 29 (76%) patients (including 4 of the 4 biopsy-proven samples) with LINH and 2 of 18 (11.1%) patients with biopsy-proven lymphocytic adeno-hypophysitis. In contrast, these antibodies were absent in patients with biopsy-proven sellar/suprasellar masses without lymphocytic hypophysitis (n = 34), including 18 patients with CDI. Rabphilin-3A was expressed in posterior pituitary and hypothalamic vasopressin neurons but not anterior pituitary. CONCLUSIONS: These results suggest that rabphilin-3A is a major autoantigen in LINH. Autoantibodies to rabphilin-3A may serve as a biomarker for the diagnosis of LINH and be useful for the differential diagnosis in patients with CDI.